

Contents

- 1. Introduction
- 2. Current Safety Standards in KOREA
 - Safety regulation infrastructure for NPP
- 3. Gap Analysis Results
 - Deviation between i-SMR design and regulatory requirements
- 4. Conclusion

1. Introduction

SMR Models

More than 70 SMRs are being developed worldwide

KOREA

i-SMR*
KHNP
Under Development (Since, 2020)

NuScale NuScale (US) Natural Circulation

BWRX-300 GE-Hitachi (US) **BWR** NRC DC (2020) Cons. Planning (CAN)

SMR-160 Holtec (US) Block Type NRC Pre-review (ing)

KLT-40S OKBM (RUS) Offshore Floating Operating (2019)

CNNC (CNA) Site-Permit Constructing (2021)

EDF (FRA) Conceptual Design Con. Plan (2030)

NuWard

UK SMR Rolls-Royce (ENG) 440MWe, Loop Type Con. Plan (2030)

^{*}Innovative - SMR

1. Introduction

i-SMR has Strength that conventional (large) NPPs doesn't have

- Arranged all Reactor Coolant Structures in an Integrated Reactor Vessel(IRV)
- Eliminated Large Pipe (Large Commercial Reactor) → Eliminated inherently LBLOCA(i-SMR)

Key

design

features

i-SMR design features meet to Safety, Economy, and **Flexibility**

- Soluble boron free operation
- In-Vessel Control Element Drive Mechanism
- Top-mounted ICI
- Fully passive safety systems
- Canned-motor RCPs
- In-Vessel Pressurizer
- In-Vessel Steam Generator
- Compact steel containment vessel
- Automatic load following

1. Introduction

The directions of i-SMR technology development

- Representative items of expected regulatory issues

Safety system without safety- 1E electricity

Robust seismic design

Passive Safety System

No Severe Accident

No need for Evacuation (EPZ)

Improved Safety

Reduced construction cost

Modularization, factory manufacturing, inland transportation

Digital Twin Program & Diagonosis

Competitive Cost

Reduction in operators for multiple modules

Enhanced Economics

Hydrogen production for industrial use

Desalination /Process heat supply

Flexible operation

Complement ing renewable energy

Coping with climate change

Increased Flexibility

2. Current Safety Standards in KOREA

- Safety regulation infrastructure systems in Korea
- ✓ Most of the current regulatory standards are focused on Large Nuclear Power Plant
- ✓ Difficult to meet the safety standards for Innovative design characteristics of i-SMR
- Necessary to analyze the gap between
 i-SMR design and regulatory requirements
- Analysis and comparison with safety standards are conducted based on TTR(Top-Tier Requirement),
 PDD(Plant Design Description) of i-SMR in this presentation

Nuclear Safety Act [Law] **Enforcement Decree of** the Nuclear Safety Act [Presidential Decree] Enforcement Regulations of the Nuclear Safety Act [Ordinance of the Prime Minister] Regulations on Technical Standards for Nuclear Reactor Facilities, etc. Regulations on Technical Standards for Radiation Safety Management, etc. [Administrative Regulation of the Nuclear Safety and Security Commission] Notice of the Nuclear Safety and Security Commission KINS Regulatory Standards / Guidelines KINS Guidelines for Safety Review and Inspection Technical Guidelines

New technology-inclusive regulatory framework will be needed

Classification of Topics by Gap Analysis

- ✓ KHNP derives "16 Gaps" inappropriate with the existing regulation and technical guideline
- ✓ Details of the gap is classified into system improvement(2), safety standard design(14)

Group		Classification by gap
System improvement (2)		1.Multiple utilization 2.Exemption or specification of application an a lternative regulations
Safety standard gap by design (14)	Common designs (5)	1.Safety class 2.Multiple failure accidents 3. Construction of Multiple Units 4.Emergency Planning Zone 5.Alternative radioactive source
	System designs (9)	6.Independent reactivity control system 7.Leakage reactor coolant pressure boundary 8.Measurement control 9.Power supply system 10.Multi-module integrated MCR and operators
		11.Diverse protection system 12.Steel containment vessel 13.Surveillance specimen 14.Passive safety system

Deviation with Nuclear Safety Act [Law]

- 1. Number of operators in MCR
- ✓ (Law) Each nuclear reactor module requires at least one SRO and RO licensed person
- √ (i-SMR) Four nuclear reactor module can be operated by three operators in an integrated MCR.
- 2. Defining the EPZ* in the site boundary
- ✓ (Law) Precautionary action zone and urgent protective action planning zone are within a maximum radius of 30 km
- ✓ (i-SMR) EPZ would be set within the site boundary

*Emergency Planning Zone

Reduction of operators

EPZ < site boundary

- Deviation with Regulation on Technical standards for nuclear reactor facilities [Regulation]
 - 1. Limitation on Location
 - ✓ (Regulation) Nuclear reactor facilities could be <u>located away from the populated areas</u>
 - √ (i-SMR) For multipurpose utilization, located near demand areas
 - 2. Construction of Multiple Units
 - ✓ (Regulation) If two or more nuclear facilities are installed on the same site, each nuclear reactor does not affect the safety each other
 - √ (i-SMR) Four reactor modules are adjacent each other

Located near demand areas

4 modules are adjacent

- Deviation with Regulation on Technical standards for nuclear reactor facilities [Regulation]
 - 3. Instrument and Control system
 - ✓ (Regulation) Twelve physical monitor variables are need to be measured (For reliable, safe operation of NPP)
 - ✓ (i-SMR) Some measurement variables <u>cannot be measured or unnecessary</u>
 ※ Boric acid concentration(Boron free), hydrogen concentration(Vacuum state)
 - 4. Electric Power System
 - ✓ (Regulation) Onsite and offsite electric power systems which are important to safety shall be provided.
 - √ (i-SMR) Adopts fully passive safety system without power supply system.

All power systems are designed to a non-safety class, no need to install an AC power

Safety system without safety- 1E electricity

- Deviation with Regulation on Technical standards for nuclear reactor facilities [Regulation]
 - 5. Diverse Protection System
 - ✓ (Regulation) Have a <u>diversity protection system in preparation for the possibility of ATWS</u>
 - ✓ (i-SMR) Design to reduce <u>software common cause failure</u>, and applies <u>heterogeneous platforms</u> to design diversity
 - 6. Reactivity Control System
 - ✓ (Regulation) Requires two independent reactivity control system with different design principles
 - √ (i-SMR) Adopts boric acid-free, designing only utilize burnable poison material.
 - 7. Residual Heat Removal system
 - ✓ (Regulation) Maintain safety even under the assumption of single power and single failure
 - ✓ (i-SMR) Adopts fully passive safety system without electricity.

4. Conclusion

- For achieving successful i-SMR standard design approval, gap analysis assessment is required due to the difference characteristics of i-SMR and Large NPP
- In this presentation, the results of the gap analysis assessment are summarized
 - 1. Detail review of Korea nuclear safety laws are performed
 - 2. KHNP derives "16 gaps" inappropriate with the existing regulations and i-SMR design
- The KHNP had published the gap analysis report

4. Conclusion - Future plan

- KHNP requested PDR (Pre-Design Review) and approval from Korea regulatory body
- Objective of PDR is to identify;
 - (1) Major technical issues, (2) Resolution plan for technical issues
- Related documents had been submitted;
 - √ Gap Analysis Report
 - ✓ Plant Design Description
 - √ 14 Technical Reports (Ex, LOCA/Non-LOCA methodology, Passive Safety System)

 Also, KHNP are planning to receive vendor design review from Canada nuclear regulatory body for expected technical issues during the standard design approval

