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Wastimate — what it is and what can it do?

For nuclear newcomer nations, early planning of the nuclear “Hello World!” of \WWastimate
fuel cycle Is critical. WastePackage = Package(Mass=1, Inventory={"Sr90":1e9}, mode="activity")
DisposalNode = Node([WastePackage])

One solution to address the challenges of early planning

| ModelUniverse = Universe(stepsize=1*60*60*24*365) + DisposalNode
- Wastimate! ModelUniverse.simulate(timesteps=60)
* Purpose: Tracks movement and decay of radioactive ModelUniverse.plot(DisposalNode, variable="activity", time_units="yr")
materials in waste management systems. o
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* Open-Source: Written in Python for ease of use and Ls- Sudden increase In the activity In
installation. . the first model step:
« No GUI: Uses a modular, class-based approach for g 14- * Ingrowth of Sr-90 daughter
creating and running simulations. 2 12 nuclide Y-90, activity doubles
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e Fig. 1: Activity of WastePackage in
| time as generated by the “Hello
he World!” Wastimate prompt.
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To verify Wastimate and demonstrate the basic

SNF benchmark functionality, two benchmarks were used: LLW benchmark
Wastimgte requires waste LLW benchmark demonstrated the modeling of
production  rates  and continuous waste quantities using two built-in
isotopic composition as an Wastimate methods:
34 bundles  Burnup of 50 input. For spent nuclear . . 61 m* of concentrated
per year GWd/tU fuel, OpenMC! depletion » Combine: Merges packages into larger sludges per year
module was used to collections. |
T - the isotopic » Separate: Homogenizes node contents and
description of the SNF. moves a fraction to a new node.
SNF model was created by Nuclide concentrations can be inputted as
| | o replicating the OECD/NEA's statistical distributions using SciPys. Waste processing rate-based
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Decay heat limit of 1.5 kW per and package mass, activity, Fig. 3: Activity distribution of the near-surface
package (12 bundles) or decay heat distribution in disposal node in time over 1000 simulations.
time.
Wastimate calculations were verified by manually tracking Results - Estimated dESIBH'baSEd criteria
iIndividual packages and comparing the results.
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Fig. 2. SNF guantity and total decay heat output of wet, dry storage
and final disposal node.
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