

IDNES a CEA project dedicated to SMR concept for decarbonization beyond pure power generation

Philippe AMPHOUX – French Alternatives energies and Atomic Energy Commission (CEA)

SESSION 5.1: Non-Electric Applications for SMR

SMR for decarbonisation Capacity to adress a large scope of industrial ecosystems

IDNES Project Main R&D areas

Axis #1 : Market studies and identification of future needs 2030-2050

High level needs
Specifications
Performances required

Axis #3: Study of an SMR dedicated to hydrogen and E-molecules production

Coupling systems of an SMR with HTSE (High Temperature Steam Electrolysis → H₂)
Performances & costs Vs market needs

Axis #4: R&D on innovative Energy Conversion Systems including storage

Axis #2: Study of an SMR dedicated to

Multi vector systems

Desalination, Carbon capture, e-fuels

Storage
Integration of other energy sources & storage

IAEA – International Conference on SMR and their applications - 21 to 25 October 2024 - CEA - Ph AMPHOUX

Pure heating reactor ARCHEOS

Market pull approach to design

Reactor concept dedicated to supply the market heat <150°C</p>

Drivers of conception: safety, simplicity, competitivity

20 to 200 MWth

Nuclear

Heat

Unit

No heat sink

1 ha site

150 °C

ARCHEOS

ADVANCED REACTOR
CONCEPT FOR HEAT
OPTIMIZED SUPPLY

As of 2029

Standard fuel

patents pending

No core melt scenario

Pure heating reactor ARCHEOS

Serving territories, industries and municipalities

Using SMR in cogeneration

Coupling 2 technological bricks:

- SMR & power conversion system (Heat to Power)
- High Temperature Steam Electrolyser (GENVIA)

Associated issues:

- HTSE development to industrial scale
- Energetic efficiency of the coupling
- Safety & security of the system
- Global operation of the system

Valuation and design methods: 3 analysis steps

Evaluate relevance of coupled systems
• Energetic relevance

 Technical economy evaluation

Define technological configuration

 Selection of a reference configuration based on a multi-criteria analysis

Design

- Pre-design of a coupling brick
- Pre-dimensioning of components plus their operability, safety, flexibility,....

Step 1 : Energetic relevance of coupled systems

- Simulation of the energy relevance of SMR-EHT cogeneration coupling using a global, multi-parametric approach.
- Identification of various relevant coupling configurations: definition of heat exchange points and modalities

Results: + 15% (average) hydrogen production by considering coupling in cogeneration heat / electricity

Steps 2 & 3: Define technological configuration

- B Selection of the best configuration by multi criteria approach (among about 25 proposals)
- Design: component sizing, general architecture, steady-state and transient operation, balance of plant including safety/security analysis ...

Presentation of a Nuclear coupled with HTSE Process for hydrogen prodcution

Nuclear Synthetic Fuels production Global configuration

- Combine Hydrogen & CO₂ capture:
- Identified reference chain
- Technological bricks : SMR, ECS, DAC, HTSE, RXGS, FT

Main design drivers:

- Integrated Energetic Efficiency
- Recycling of uncovered reagents (H₂, CO₂, CO, H₂O)
- Reforming of unwanted by-products (C₁ → C₅)

Presentation of a Nuclear Coupled Synthetic Fuels Process using Fischer-Tropsch

Nuclear Synthetic Fuels production Energetic efficiency optimization

Evaluation of the energetic relevance of the coupled stystem

simulation results of LHV produced with a nuclear integrated system in different configurations

Life Cycle Analysis under progress

Thermal storage For greater flexibility

Context:

- Increasing share of renewables in the power mix
- Compatibility between SMR Power grid flexibility requirements thermal storage technology

Technical configuration:

- Two tanks facility filled with molten salt
- Storage loop implemented between the primary circuit and the power conversion system

Key benefits:

- Flexbility for the grid
- Profitability for SMR
- Safety issues

Presentation of a Nuclear power plant configuration with two tanks storage system

Energy	Total mass of salt	Volume of a tank (h =14m - φ = 39m)	Tanks number	Heat Exchangers power
2592 MWth	104 k tons	16 410 m ³	6 (3x2)	324MWth

Preliminary design of tank using HITEC salt for daily flexibility

TANDEM, a horizon-europe project

about integration of SMRs into carbon-free hybrid energy systems

$2022 \rightarrow 2025$

High-level objectives:

- Assessing the safety compliance of SMRs to be integrated into the future European energy mix
- Providing guidance on the future integration of SMRs and AMRs into well-balanced hybrid energy in the systems case deployment scenario

18 partners from 8 European countries, composed of: universities, research institutes, TSO, industrials and engineering organizations

THANK YOU FOR YOUR ATTENTION

CONTACT

Pierre GAVOILLE : <u>pierre.gavoille@cea.fr</u>

Philippe AMPHOUX: Philippe.amphoux@cea.fr

Co-Authors: Jean-Michel RUGGIERI, Eric HANUS, Claire VAGLIO-GAUDARD, David HAUBENSACK, Nicolas ALPY, Clément LIEGEARD, Franck MORIN, Jean-Baptiste DROIN, Charly BOUDOT, Nicolas TAUVERON, Fabrice BENTIVOGLIO, Frédéric DUCROS, Luc BERTIER, Coralie QUADRI