

newcleo's Fuel Cycle Innovations for SMR-LFR including transport of fresh and spent fuels

J.M. Marin, L. Cinotti, D. Favet, B. Nixon, C. Dupont

Fuel Programme Technical Director, newcleo

October 2024

A long-term vision centred on safety and sustainability

Fuel: MOX

- A clean solution to the issue of costly and long-lasting nuclear waste disposal, using depleted uranium and plutonium that today have little use
- The **long-term strategy** will eliminate the need to mine new uranium, enable energy independence, and reduce the volume headed to geological repository
- Spent fuel will be reprocessed multiple times, reducing drastically byproduct's volume and their radiotoxicity

Closing the fuel cycle

A novel approach is envisioned to better use the fissile nuclear material from the current fuel cycle

Advantages of MOX (Mixed Pu-U Oxides):

- cost-effective
- clean source of energy
- virtually inexhaustible production of nuclear energy
- no need of mining

Our programme contributes to Europe's decarbonised energy independence, the stabilisation of plutonium stocks and the reduction of the radiotoxicity of final waste

- newcleo's ambition is to contribute to the fuel cycle closure by deploying a Gen-IV LFR-SMR reactor combined with a MOX_{LFR} fuel fabrication plant
- A significant amount of the nuclear materials currently available in France and Europe can be recycled in fast-neutron reactors and are sufficient for the deployment of newcleo's LFRs by 2050, without disrupting EDF's current MOX_{LWR} processing / single-recycling scheme

The new fuel cycle: high level overview of current and MOX fuel cycles

MOX: composition and facilities

U

- Uranium is either depleted or from reprocessing (RepU)
- Our vision frees from the mining dependence of Uranium from foreign countries
- It also makes good use of the large stocks of existing reprocessed and depleted Uranium from past enrichment processes and traditional reactor cycles
- Pu is consumed in significant quantities (up to 35%)

Pu

- Traditionally difficult to recycle in LWRs without coupling to enriched U
- Made possible to recycle in LFRs since Pu and U are fissile isotopes in fast reactors; can then consume Pu without enriching U

newcleo MOX_{LFR} fuel fabrication plant design and licensing in progress

Plant principles:

High level of nuclear and operational safety, security and physical protection

High level of automation and robotisation for optimum protection of workers and the environment

Reprocessing capacity will require:

- MOX_{I WR} fuel reprocessing unit
- MOX_{FNR} fuel reprocessing unit

Conclusions

- Starting in the early 2030s, newcleo's ambition is to contribute to the fuel cycle closure by deploying a Gen-IV LFR-SMR Fast Neutron Reactor combined with a MOX_{LFR} fuel fabrication plant
- Our programme contributes to Europe's decarbonised energy independence, the stabilisation of plutonium stocks and the reduction of the radiotoxicity of final waste
- The paper is presenting the main features of *new*cleo LFR-SMR and the R&D programme initiated to validate both the material (steel and alloys) behaviour in lead environment

Thank you

