

newcleo's R&D Programme in support of LFR design and deployment

L. Cinotti, A. Barbensi, A. Toti, F. Moretti, M. Tarantino, U. Pasquali

Chief Scientific Officer, newcleo

October 2024

A new, innovative player in the field of nuclear energy

REACTOR DESIGN:

Small Modular (SMR) + Lead-cooled Fast Reactors (LFR) = AMR

newcleo is working to design, build, and operate Gen-IV Advanced Modular Reactors (AMRs) cooled by liquid lead

FUEL MANUFACTURING:

Mixed Uranium Plutonium Oxide (MOX)

MOX and Fast Reactors allow the multi-recycling of nuclear waste into new fuel with no new mining for generations

INTRINSICALLY SAFE

COMPETITIVE ENERGY COST

CIRCULAR
NUCLEAR WASTE
RECYCLING

Our ambitious timeline

2026

2030

2031

2033

R&D and Precursor

Several R&D facilities, and a **10 MW** non-nuclear facility with turbogenerator

Design, manufacturing and operation of the facilities according to the time schedule

MOX production

FR-MOX production facility, starting from available (separated) material in France LFR-AS-30

30 MWe nuclear irradiation reactor with core outlet at 440°C and later 530°C

LFR-AS-200

200 MWe FOAK, also for nonelectrical uses (e.g. cogeneration and chemicals production)

Basic Design in progress

Pre-licensing "preparatory stage" ended in June 2024 in France

in progress
First meeting with ONR (UK)
on 18-09-2024

Configuration of *new*cleo's LFR

Economics

Compact primary system

- Innovative components
- Elimination of components no more needed
- Reversal of traditional engineering solutions

Compact reactor building

- No intermediate loops
- Compact primary system
- No risk of LOCA

newcleo's broad R&D programme

newcleo has established and is rapidly deploying a broad R&D programme to consolidate mature technologies and validate our innovative engineering solutions, as well as evolve our commercial reactor offering. These are current and planned non-nuclear facilities

Experimental Facility LFR Technical Domain	CORE1 & CORE2	CAPSULE	LEAD/CHEM LAB (BRA)	MAT LAB (TO)	MANUT in-lead	MANUT dry	EFESTO	NACIE-LHT	DCI	CIRCE-NEXTRA	ОТНЕГГО	PRECURSOR
Structural materials and coatings												
Core, fuel and control/shutdown rods												
Coolant chemistry and auxiliary systems												
Primary system integrity and component studies												
Fuel and component handling												
Plant operation and accident response												
Balance of plant and reactor-turbogenerator coupling												

ENEA-Brasimone Facilities

Material R&D – programme and infrastructure

Static corrosion capsules

- CAPSULES: 6 skids of 3 capsules; 108 samples
- Active control of [O] and T (400-750°C)

Flowing Pb loops

- CORE-1: 32x corrosion (1 m/s, T<650°C) + 3x erosion (10 m/s, T<520°C) + cold-trap and mechanical filters
- **CORE-2**: 160 corrosion samples (1 m/s, T<650°C)

Laboratories

Mechanical tests in Pb

- Creep and fracture mechanics frames
- Tensile test/SSRT frame

Metallography and Microscopy

Metals, corrosion layer thickness,
 morphology and chemical composition

Metrology

 Dimensional measurements with μm precision

Perform corrosion exposure experiments on steels, surface treatments and new materials, in static and flowing conditions and under mechanical stress

LFR Primary System: Thermal-hydraulics, components and structural integrity

- Thermal-hydraulic tests in normal and off-normal conditions
- Design validation and testing of components
- Instrumentation development

Fuel Assemblies

Steam Generator

Primary Pumps

Decay Heat Removal (DHR)

Primary system integrity

Refurbishment of ENEA facilities

NACIE-LHT

Test section to study lead cross flow heat transfer of the Steam Generator

CIRCE-**NEXTRA** One or more test sections at existing **ENEA-CIRCE:** Component testing/qualification and Steam Generator Tube Rupture (SGTR) tests

New test facilities

OTHELLO 2 MW

DIP COOLER INSTABILITY Turin

EFESTO

New thermal-hydraulics loop test facility for thermalhydraulics and component performances

New test facility for TH investigation on Decay Heat Removal system

Fluid-structure interaction test: Earthquake and Sloshing

EFESTO notional sketch

DCI test section

OTHELLO

Fuel and Component handling / control rods / ISI&R

MANUT programme

- Mechanical design validation and equipment testing
- Instrumentation
- Functional tests and operations / procedures

Core design

Rotating Plugs

Fuel Handling Machine

Component handling and maintenance

Control Rods driving mechanism

Dry tests

Tests in air on fuel and component handling

In-lead tests

Infrastructure under development @Brasimone site

HUSTLE

- Devoted to the development of ultrasonic technology for In-Service Inspection & Repair (ISI&R)
- Tests performed in a tank filled by molten pure lead

Phase 1 – US in hot air

Phase 2 – US in liquid lead

HUSTLE - Phase 2

PRECURSOR test facility

Integral-effect test facility representative of LFR-AS-30

- PRECURSOR is a 10MWth (1/9 of LFR-AS-30) pool-type facility that aims at investigating the thermalhydraulic behaviour of the LFR-AS-30 reactor, with particular focus on:
 - Normal Operating conditions, normal start-up/shut-down transients and, to some extent, accidental transients
 - BOP transients, coupling with SG and test of its stability domain, and interactions with primary system
- Challenge to find the best tradeoff between representativeness (both at system and components level), costeffectiveness and other side constraints (e.g., time, space)
- Consolidated Power-to-Volume (P2V) scaling method and phenomenadriven approach adopted

DHR2:

 three water-steam loops, each consisting of a dipcooler, condenser and connecting piping

eCore:

- designed to comply with P2V while ensuring primary flow shaping (19 FAs) and minimising the number of heating rods
- Electric supply from above
- Ongoing activities to design cooling systems for parasite power generation due to Joule's effect.

Pump and SG:

- SG designed to minimise the radial footprint (due to P2V constraints) while ensuring representative operating conditions of primary and secondary circuit
- Axial flow pump inside the SG as in LFR-AS-30

Pools and ASIV:

- PRECURSOR vessel and Amphora-shaped Inner vessel (ASIV) to preserve ratio between hot and cold lead volumes
- Preserved components and overall system length

newcleo's R&D Programme timeline driven by LFR-AS-30

Thank you

