TUBE INLET ORIFICE DESIGN OF A ONCE-THROUGH STEAM GENERATOR CONSIDERING OPERATION STRATEGIES

Hun Sik Han*, Young In Kim, Youngmin Bae, Seungyeob Ryu Korea Atomic Energy Research Institute, Daejeon, Republic of Korea *Corresponding author: hshan@kaeri.re.kr

INTRODUCTION

Integral-Type Pressurized Water Reactor (PWR)

Helically Coiled Tube Once-Through Steam Generator (OTSG)

- In-vessel steam generator
- Compact design and simple flow path arrangement
- Primary coolant flowing down outside the tubes and secondary feedwater flowing up inside the tubes (counter-flow operation)
- Superheated steam generation (no steam separator)

Motivation

- Flow oscillation due to the phase change of the feedwater from subcooled water to superheated steam
- Orifice installation at the tube inlet for flow stabilization
- Prediction of the operating point according to the operation strategy for the tube inlet orifice design

Objective

 To investigate constant thermal power operation strategies and to compare the orifice design results of the different operation strategies

ANALYSIS METHOD

ONCESG

- Design and analysis code for a once-through steam generator using helically coiled tubes
- Three major heat transfer regions: economizer, evaporator & superheater

Operation Strategies

- Secondary coolant inlet temperature control
- Secondary coolant flow rate control
- Secondary coolant outlet pressure control

Orifice Length Criterion

- Screw-type tube inlet orifice

$$\begin{split} L_{\text{ori}} \geq L_{\text{ori_min}} &= \frac{K_{\text{ori_min}} \rho_{\text{e}} v_{\text{e}}^{\ 2} - K_{\text{i}} \rho_{\text{i}} v_{\text{c_1}}^{\ 2} - K_{\text{e}} \rho_{\text{c_2}} v_{\text{c_2}}^{\ 2}}{\left[f / w + 0.1 / \left(\pi D_{\text{avg}} \right) \right] \rho_{\text{c_1}} v_{\text{c_1}}^{\ 2}} \sin \theta, \\ K_{\text{ori_min}} &= 2 \left[\kappa_{\text{min}} \left(\Delta P_{\text{two}} + \Delta P_{\text{sup}} \right) - \Delta P_{\text{sub}} \right] / \left(\rho_{\text{e}} v_{\text{e}}^{\ 2} \right) \end{split}$$

OTSG Design

- Marine Reactor X (MRX) OTSG design data
- Steam generator conditions

SG condition	1	2	3	4	5
Plug. ratio, α [%]	0.0	2.6	5.2	7.7	10.3
No. of tubes, N [ea]	388	378	368	358	348

Orifice

RESULTS AND DISCUSSION

Control Parameters & Orifice Design Comparison

CONCLUSIONS

- The $T_{\rm in}$ control operation, m control operation, and $P_{\rm out}$ control operation allow a relatively high $T_{\rm in}$, a relatively low m, and a relatively high $P_{\rm out}$ compared to the other different operation strategies, respectively, except when the OTSG operates at the design condition.
- The P_{out} control operation provides a relatively high secondary coolant pressure and results in a reduced orifice length because the flow instability becomes less severe under high pressure.

