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CONCLUSION

✓The core calculations of a typical 100 MWe integral SMR

✓ (1) An one-way thermal-hydraulic and neutronic calculation 

✓ (2) Same calculation with strong iterative coupling method

✓Neutronic verification: against probabilistic approaches.

✓Thermal-Hydraulic verification: against PARCS code.

✓Both approaches (1) and (2) yielded acceptable average results

✓Data obtained with a simple method are not very trustworthy

✓There is a 15.9% relative error in the MDNBR value
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INTRODUCTION

• Reactor core design relies on simulation techniques

• Neutronics and thermal-hydraulics software tools are used

• Most of these software tools (codes) are interdependent

• N-calculations rely on the nuclear cross section data

• TH-calculations for safety parameters such as CHF, MDNBR

• One-way coupling: N and TH solvers are utilized 

independently.

• Strong coupling: N and TH solvers are interconnected.

• Aim: Comparison between one-way vs strong coupling

• Aim: the core of a typical 100 MWe SMR
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METHODS AND MATERIALS

• Neutronic cell calculations (DRAGON ): cross sections

• Neutronic core calculations (DONJON): PPFs

• Thermal-hydraulic calculations (COBRA): Temperature

• The convergence is checked

• Above stages are iterated to reach convergence criteria
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Keff at the BOC

• Simple coupling→ 1.000593

• SAR→ 1.005724

• Difference: 513 pcm

Radial PPF Values

• Simple coupling→ 1.1303

• Strong coupling → 1.1165

• Difference: 1.23%

Axial PPF Values

• Simple coupling→ 1.3390

• Strong coupling → 1.3530

• Difference: 1.03%

Average CHF Values

• Simple coupling→ 1.338789 

kW/m2  

• Strong coupling → 1.253989 

kW/m2

• Difference: 84.8 kW/m2

highest CHF temperature 

difference is around 0.25 K

15.9% relative error in the 

MDNBR calculations 
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