Flexibility limits in Small Modular Reactors (SMRs) for enhanced load-following

Shiny Choudhury¹, George Tynan¹, Michael Davidson^{1,2} and, David Victor²

¹Mechanical and Aerospace Engineering,
 ²Global Policy School,
 © University of California, San Diego

October 23, 2024

PhD Advisors:

George Tynan

Michael Davidson

David Victor

Nuclear is traditionally a baseload generator:

Main Reasons:

- (technical) Complex technology and designed primarily for baseload operation
- (economic) High CapEx, low OpEx
- (regulatory) Nuclear industry is heavily regulated and are required to stick to predefined operations modes

VRE penetration increases the demand for flexible generation:

Figure 3. Wind (and solar) generation can lead to greater need for flexibility

Source: Cochran et al. 2014

More VRE \rightarrow high variability *net-load* curve \rightarrow thermal fleet needs to operate more flexibly. This applies to nuclear too.

Current Nuclear flexibility (US):

Currently due to regulations [1], nuclear reactors are allowed a *once-daily* 100%-50%-100% rated power change in a sequence of 12-3-6-3 hr transitions while in *load-following* mode.

Current Nuclear flexibility (France):

France allows a 100%-20% in 30 mins and again after 2 hours, or twice in 24 hours [2].

Small Modular Reactors (SMRs)—a solution for better nuclear flexibility?

Small Modular Reactors (SMRs) are a new class of advanced nuclear reactors with three key features:

- Small: Less than 300 MWe in size.
- Modular: Factory-built with standardized designs for cost-efficiency and faster construction.
- Advanced: Higher enrichment, equipped with inherent safety features, and greater operational flexibility.

Central idea of this study:

Comparison of GW reactor fleet vs SMR fleet

More specifically:

- Build a physics informed stylized LWR representation of nuclear reactor
- A modified energy system model (Unit Commitment Framework) for nuclear dispatch in various VRE mixes
- Case study: GW-class reactors (Westinghouse AP1000) vs SMRs (Westinghouse AP300)
 - Flexibility analysis in high VRE scenarios—Production cost, VRE penetration, VRE curtailment
 - Sensitivity analysis

New Nuclear Constraint: 1) Minimum Power levels for load-following

Based on exhaustive reactor physics computation we come up with *minimum allowable power levels* based on the state of fuel degradation.

Figure: Evolving P_{min} for AP1000 and AP300 to remain in load-following mode

New Nuclear Constraint: 2) Downtime/Deadtime based on fuel degradation state

If we shutdown a reactor, the downtime (also called Deadtime) will depend on fuel degradation state. Higher degradation translates to longer deadtimes.

Scenario Design and Model Framework:

Scenario Design and Model Framework:

Individual reactors in each fleet are operated in two modes—inflexible and flexible.

INFLEXIBLE:

The reactor can generate power between [P_{max}, 0] or only as ON/OFF

FLEXIBLE:

The reactor can generate power between [P_{max}, P_{min}] in addition to operating ON/OFF

Results: Broad highlight

SMRs perform better in most metrics—on some of them marginally on others significantly

Results: Generation and Non-served energy (NSE)

- Both flexible and inflexible generator less energy compared to GW fleet
- Inflexible GW reactors accumulate significant NSE in high-solar mixes, inflexible SMRs can avoid most of it. No NSE in flexible operation.

Results: VRE Curtailment

- Inflexible SMRs reduce curtailment in high-wind mixes at all levels of VRE penetration
- No significant difference in curtailment between flexible SMRs and GW reactors

Results: Production Cost [inflexible]

 Inflexible SMR fleet consistently lowers production cost at all levels of VRE compared to inflexible GW fleet

Results: Production Cost [flexible]

• Flexible SMRs increase production costs marginally at low VRE and then reduce it at higher VRE when startup/shutdown costs are lower than savings from VRE.

Results: Spinning upwards/downwards reserve

• Flexible SMRs fulfill more spinning upward and downward reserve across all scenarios

Results: Summary for core scenarios

- Across similar operational parameters SMR fleet benefits depends on VRE context.
 SMR is well suited for high-wind scenarios. In high-solar scenarios, SMRs substantially reduce NSE.
- SMR results are more profound when the longer refueling is considered.

Sensitivity analysis:

What parameters affect flexible dispatch and what kind of policy support can we enforce for greater SMR flexibility?

Parameters highlighted:

- Minimum power levels
- Ramp rates
- Startup/Shutdown costs

Results: Generation and Cost change from base

Results: VRE curtailment

Lower startup/shutdown cost impacts VRE curtailment the most

Results: Findings

- Generation and cost diff percentage across parameters relative to flexible core AP300 @ 20% VRE

 Nuclear

 Nuclear

 Solar
- Startup/shutdown costs is the most sensitive parameter, followed by minimum power levels
- At low levels of VRE penetration, both lower startup/shutdown costs and lower minimum powers result in comparable VRE integration and yield similar cost reductions
- At higher levels of VRE penetration, lower startup and shutdown costs enable increased VRE integration and yield greater cost reductions compared to configurations with higher minimum power constraints
- Most spinning upward/downward reserve is fulfilled with lower minimum power levels

Recommendations:

- Smaller reactors reduce VRE curtailment, NSE, and net production costs more effectively than larger ones, especially at higher VRE penetration.
- For enhanced flexibility and VRE integration, lowering startup/shutdown costs and minimum power levels are more effective than faster ramping SMR reactors.
- SMRs are compatible with various VRE mixes, can be collocated with VRE to minimize overbuild, curtailment, and nuclear waste.
- Current nuclear reactors have the capability to operate more flexibly, though flexible operation is not economically lucrative. Define an out-of-market payment to value nuclear flexibility and incentivize flexible operation.

References: I

- [1] Advanced Nuclear Technology: Advanced Light Water Reactor Utility Requirements Document, Revision 13. URL: https://www.epri.com/research/products/000000003002003129 (visited on 10/11/2024).
- [2] Patrick Morilhat et al. *Nuclear Power Plant flexibility at EDF*. en. Jan. 2019. URL: https://edf.hal.science/hal-01977209 (visited on 09/06/2024).