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Outline

Motivation for covariance determination
What is a covariance matrix?
Examples from major nuclear libraries

How to determine a covariance matrix?



Situation in neutron sublibrary

192 materials in neutron sublibrary

Only ~1/3 of the files contain covariance info in MF33
Missing for important structural materials (e.g. Cr, Ni, Fe, Cu)
Further: V, Ta, Pb, etc.



Consistent evaluations
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Nuclear data evaluation with Bayesian networks

Georg Schnahclfl'ﬂ Roberto Capote.! Arjan Koning.! and David Brown®

'NAPC- Nuclear Data Section, International Atomic Energy Agenecy, Vienna, Austria
? National Nuelear Data Center, Brookhaven National Laboratery, Upton, NY 11973-5000, USA
(Dated: October 22, 2021)

Bayesian networks are graphical models to represent the deterministic and probabilistic rela-
tionships between variables within the Bayvesian framework. The knowledge of all variables can be
updated using new information about some of the variables. The Bayesian Generalized Linear Least
Squares method can be regarded as an inference method for Bayvesian networks of variables with
multivariate normal priors and linear relationships between them. We show that relving explic-
itly on the Bayesian network interpretation enables large scale inference and gives more flexibility
in incorporating prior assumptions and constraints into the nuclear data evaluation process, such
as the constraints that some cross sections equal linear combinations of other cross sections and
that all cross sections must be non-negative. The latter constraint is accounted for by a non-
linear transformation and therefore we also discuss inference in Bayesian networks with non-linear
relationships between variables. Using Bavesian networks, the evaluation process yvields more de-
tailed information, such as posterior estimates and uncertainties of all statistical and systematic
errors associated with the experiments. We further elaborate on a sparse Gaussian process con-
struction that can be well integrated into the Bavesian network framework and applied to, e.g..
the modeling of energy-dependent model parameters, model deficiencies of the physics model or
energy-dependent systematic errors of experiments. We present three proof-of-concept examples
that emerged in the context of the neutron data standards project and in the ongoing international
evaluation efforts of "*Fe. In the first example we demonstrate the modelization and explicit esti-
mation of relative energy-dependent error components associated with experimental datasets. Then
we show that Bayesian networks in combination with the outlined Gaussian process construction
may be applied to an evaluation of **Fe in the energy range between one and two MeV, where it is
difficult to obtain satisfactory evaluations by R-Matrix and nuclear model fits. Finally, we present a
model-based evaluation of “*Fe between 5 MeV and 30 MeV with a consistent and statistically sound
treatment of model deficiencies. The R scripts to reproduce the Bayesian network examples and
the nucdataBaynet package for Bayesian network modeling and inference have been made publicly
available.

https://arxiv.org/abs/2110.10322




Example application to Ni isotopes

5 Presentation at CM INDEN Structural Materials (6-9 December 2022)
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Multivariate normal distribution (MVN)
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MVN as probability distribution
for functions

o(E'") = Interpolate[(E1, 01), .. ., (Ei,04),...(En,on)]|(E)

COI'1o0 = COV12/((51(52)



Correlation plot (TENDL2021)

Correlation plot for TENDL2021: W-184 (N, TOT)
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Samples (TENDL covariance matrix)

W-184 (N, TOT) with samples
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Samples (TENDL covariance matrix)

residual plot for TENDL2021: W-184 (N,TOT)
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median uncertainty of sample distribution: 3.1%
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energy [MeV]

Correlation plot (JEFF33)

Correlation plot for JEFF33: W-184 (N, TOT)
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Samples (JEFF covariance matrix)

W-184 (N, TOT) with samples
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Samples (JEFF covariance matrix)

residual plot for JEFF33: W-184 (N, TOT)
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Correlation plot (ENDFB80=FENDL32b)

energy [MeV]

Correlation plot for FENDL32b: W-184 (N, TOT)
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Samples (FENDL covariance matrix)

W-184 (N, TOT) with samples

—— FENDL32b
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Samples (FENDL covariance matrix)

residual plot for FENDL32b: W-184 (N, TOT)
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Construction of covariance matrix

Situation
Original covariance matrix missing or incomplete

Don’t want to change cross sections (no re-evaluation)

Desiderata
Mathematically sound procedure

Account for measured values and their uncertainty information



Kullback-Leibler Divergence

KL divergence for continuous distributions:

B P(dz)
Da(Pl@= [ lng( 5 m) P(da),
Solomon Kullback “Distance” between two distributions

KL divergence = 0: distributions are identical

Specialized to case of two MVN distributions:

1
Dra (o | 5) = 3 {r(2780) + (s — o) "B (i — i) — -+ =
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Richard Leibler



Nuclear data case

N (figin, Xiip)

N (ﬁemp: Ee:t:'p)

Adjust Z;, to make distributions as similar as possible measured by KL divergence

20
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Structure of %,

e A lot of possible reasonable choices (to be explored more)
e Here for (n,tot) between 20 and 100:

— Smooth cross section

— Simple parametrization: amplitude 0 and length scale p

Cy/a(d) = o (1 + ‘/jd) exp(—%)

Matern covariance function
(d=Ei-E)



Samples (FENDL)
with optimized Matern covmat

W-184 (N, TOT) with samples
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Samples (FENDL)

with optimized Matern covmat
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Optimized Matern covariance matrix

energy [MeV]

Correlation plot for FENDL32b: W-184 (N, TOT)
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Challenging modeling cases

W-184 (N,A)
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cross section [mb]

Sampling using FENDL32b

W-184 (N,A) with samples
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Sampling using JEFF33
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cross section [mb]

Sampling using TENDL2021
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Summary

Meaning of covariance matrix (e.g., as pdf on function space)

Proposed Kullback-Leibler divergence for estimating covariance matrices
without re-evaluation of mean values

Maximizing “compatibility with experimental data”
Proof-of-concept application to W-184 (n,tot)
Many open questions for further exploration:

— Structure of covariance matrix

— Especially if experimental data scarce
— Incorporation of model constraints

— Sum rules

Such covariance matrix estimation capability especially attractive in FENDL
project where parts of evaluation may come from different libraries or
evaluators (with/without uncertainty information)
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Discussion points

e Do all isotopes need uncertainty information?
e How data users are using uncertainties?

e Any isotopes that should be prioritized?
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