

Neutronics using FENDL data: Experimental benchmarking at JET in DTE2 with ITER materials

Lee Packer, P. Batistoni, C. Bearcroft, S. C. Bradnam, E. Eardley, M. Fabbri, N. Fonnesu, M Gilbert, Z Ghani, K. Gorzkiewicz, C. Grove, R. Kierepko, E. Laszynska, I. Lengar, X. Lituadon, S. Loreti, J.W.Mietelski, M. Pillon, M. I. Savva, C.R. Shand, I.E. Stamatelatos, A. N. Turner, T. Vasilopoulou, R. Villari, A. Wójcik-Gargula, A. Zohar and JET Contributors*

*See the author list of 'Overview of JET results for optimising ITER operation' by J. Mailloux et al 2022 Nucl. Fusion 62 042026

FENDL meeting 10th October – 2nd November 2023

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union nor the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Why irradiate ITER materials within the JET nuclear environment?

- Take advantage of the large 14 MeV neutron fluence during JET DTE2 to irradiate samples of real ITER materials used in the manufacturing of the main in-vessel tokamak components.
- The materials considered include: SS316L steels from a range of manufacturers, SS304B, Alloy 660, W, CuCrZr, XM-19, Al bronze, Nb₃Sn, NbTi and EUROFER for example.

L W Packer et al. | FENDL meeting 2023

Slide 1

Fusion conditions in JET in the LTIS LTIS (Long-Term Irradiation Station)

2021: Optimised D-T mix

1997

Neutron fluence over 715 days 5x10¹⁵ n/cm²

Slide 2

L W Packer et al. | FENDL meeting 2023

2021: 50:50 D-T

Peak power

12

usion power (MW)

8

Neutronic simulations of the JET nuclear environment:

activity predictions for ITER materials

Co60

Ta182

V49

Co58

Cr51

Nb95

Fe59 Y91

DD

DT

ТТ

16/08/22 · 13/09/22 ·

24/05/22 21/06/22 19/07/22

Nb93m Zr95

FISPACT-II

Inputs to simulations: ITER material elemental composition certificates

Subset of material elemental compositions

Previous work: irradiation of ITER materials during JET DD

(C38) campaign

- ⁵⁷Co, ⁵⁸Co, ⁵¹Cr, ⁵⁹Fe and ⁵⁴Mn are observed to be closest to 1, with averaged values per nuclide within the range 1.08–1.39
- ⁶⁰Co has a high average C/E of 6.55
- Discrepancies observed included ⁶⁵Zn and ¹⁸²Ta in some samples

See L.W. Packer, et al, Technological exploitation of the JET neutron environment: progress in ITER materials irradiation and nuclear analysis, Nuclear Fusion (2021) **61** 116057, <u>https://doi.org/10.1088/1741-4326/ac2a6b</u>

Current work: ITER materials LTIS configuration for DTE2

exposure

- ITER samples, dosimetry foils and PALS samples were irradiated in DTE2 within an assembly 'ACT holder'
- The ACT holder was retrieved from JET on 25/09/2022
- Transferred to the UKAEA Materials Research Facility for extraction of samples
- Measured contact dose rate: 660 µSv/hr [calculated 673±75 µSv/hr]
- The samples were then distributed to various labs: NCSRD, ENEA, IFJ-PAN, IPPLM

Post-irradiated ACT holder containing the samples

Gamma spectrometry measurement of the ACT holder

[Channel #Channel #Channel #Channel #Channel #Channel #Channel #Channel #Channel #Channel 1 [Channel 13] Channel 13 [Channel 15] Channel 19 [Channel 19] [Channel 20] Channel 23 [Channel 24] [Channel 24] [Channel 25] [Channel 25] [Channel 26]																																	
	CI	nannel 10	hannel 2	Channel	3Channe	4Channe	1 5Chan	nel 6Ch	annel 70	Channel 8	Channel S	Channe	110	Channel 1	Channel 1	Channel 1	Channel 1	Channel 15	Channel 1	6 Chan	inel 17	Channel 18	B Char	nnel 19	Channel 20	Channe	121Ch	annel 22	Chann	el 23 C	Channel 24	Channel :	25 Channel 28
		at Org I	Mat Org	Mat Or	a Mat Or	g Mat Or	g Mat I	Drg Ma	at Org I	Mat Org	Mat Org			Mat Org	Mat Org	Mat	Org	Mat Org	Mat	Org	Mat Org	Mat O	rg Ma	at Org			lat Org	Mat On	g Mat Org				
0	2	ITER	2 ITER	3 ITE	R 4 ITE	R 5 ITE	R 6 1	TER 12	ITER	14 ITER	16 ITER	CAS Fo W #7 M		Fe CCFE	Fe CCFE	18	ITER	19 ITER	21	ITER	23 ITER	26 IT	ER Y	IFJ	Co	IFJ IFJ IFJ C	Co NCSRD						
0																																	
0												Mo #9 W	#8																			4	
0																																	
0 B 0	_		20 1760	21 175	D 22 IT	0 22 176	0 24	TED 25	ITED	26 (TED	27 ITER	Mo#10 Fe		TI CCEE	TI COSE	10 ITED	20 1750	21 ITER	22 ITED	22	ITED	24 ITED	25	ITED	26 ITED	27 17			TI	161			
0		TIER	20 HER	21 112	K 22 11	.K 25 110	R 24	IER 25	DITER	20 TIER	1999) (1999)	W #14 Fe		II CUPE	II CUPE	19 HER	20 TER	21 HER	22 TIER	25	HER	24 TIER	25	HER	20 HER	27 11		1 15		112 1	II NUSKU	VERDI	VERDI
	1																															NCSRD	NCSRD
1												W #15 W	#9																			1	
C 1	2 3 1	TER	11 ITER	12 ITE	R 13 ITE	R 14 ITE	R 15	TER 16	TER	17 ITER	18 ITER	Mo B V	v #16	Co CCFE	Co CCFE	10 ITER	11 ITER	12 ITER	13 ITER	14	ITER	15 ITER	16	ITER	17 ITER	18 IT		i IFJ	Ti	IEJ I			
1																																	
1	6																														CCFE foil for	-	
	8 1	ITER	2 ITER	3 ITE	R 4 ITE	R 5 ITE	R 6 1	TER 7	ITER	8 ITER	9 ITER	Y (CFE	Y CCFE	Y CCFE	1 ITER	2 ITER	3 ITER	4 ITER	5	ITER	6 ITER	7	ITER	8 ITER	9 IT	ER			C	Co NCSRD		
	_																																
2		•					- C																										Key
2 2 2 2	3	Ar	rar	nge	eme	ent	OŤ	IIE	: R :	san	nple	es	-		• 26																		
2	5		1		•	- 1	. . .		•	1 1.			25 24 23 22 2																				
and dosimetry foils in the												16	15 14 13	12 11																	IFJ		
ACT holder												BI	y t	543	·LAST / /																	IPPLM	
2	.9	A		noi	uer								26x #18			\$																	CAS
J																					1.1			r 01			<u> </u>	~ ~ ~	tine	20	ົ້		

Slide 6

Nuclear characterisation of the LTIS: Dosimetry foil-based measurements

- The weighted average C/E across all dosimetry foil diagnostic measurements was 0.986 ± 0.01
- The uncertainty in the KN1 neutron yield diagnostic is reported as 10 % and so the fast neutron fluence value is consistent (within uncertainties) with measurement
- May indicate a slight overestimate of the thermal neutron flux within the LTIS. The discrepancy could also potentially originate from factors such as self-shielding effects from adjacent materials or unaccounted-for details in the model.

Post DTE2 irradiation gamma spectrometry measurements

ITER materials were measured using gamma spectrometry techniques at several laboratories to identify and quantify nuclide activities generated through neutron activation

Participating gamma spectrometry laboratories: (a) NCSRD; (b) CCFE; (c) IFJ-PAN; (d) ENEA and (e) IPPLM

Gamma spectrometry measurements: BEGe + Compton

suppression system (CSS) for an ITER CuCrZr sample

Slide 9

Post DTE2 C/E results – all data grouped by material and isotope

- In general, the isotopes ⁴⁶Sc, ⁵¹Cr, ⁵⁴Mn, ⁵⁷Co, ⁵⁹Fe, ⁹⁵Nb and ¹⁸¹Hf have C/E values closest to 1 with weighted averages (excluding material outliers) within 25%
- CuCrZr and W monoblock samples showed comparatively more deviations than other samples
- High C/E values were seen in some materials for ⁵⁸Co (CuCrZr *8.6*, Tungsten *7.3*), ⁶⁰Co (6 materials e.g. SS316L(N) *3.29*), and ¹⁸²Ta (CuCrZr *60*, XM-19 *17*, Inconel-718 *13*). These isotopes are important for SDDR, but these results generally show calculations are conservative.
 - Although 4 materials gave ⁶⁰Co result with C/E<1 (e.g. Eurofer 97-2 *0.3*) an underestimation in calculations. 2 materials (Al-Bronze and SS316L(N)-IG within 25% of C/E=1).
- Some low C/E values observed, particularly ⁶⁵Zn and ⁵⁶Co. ^{110m}Ag observed unexpectedly in CuCrZr.
 ¹⁸²Ta observed unexpectedly in Alloy 660 (IWS), SS316L and SS316L(N)

Slide 10

Summary matrix

ITER Mat.	Material	Sc-46	Cr-51	Mn-54	Fe-59	Co-56	Co-57	Co-58	Co-60	Zn-65	Zr-95	Nb-95	Ag-110m	Ta-182	Hf-181	W-181	W-185		
ITER#1	SS316L(N) -vv plate																	1	
ITER#2	SS316L(N) - vv plate																		
ITER#3	SS316L(N) - vv plate																	1	
ITER#4	SS316L(N) - TF plate																	1	
ITER#5	SS316L(N) - TF plate																		
ITER#6	SS316L(N) - TF plate																		
ITER#7	SS316L(N) - TF plate																		
ITER#8	SS316L(N) - TF plate																		
ITER#9	SS316L(N) - TF plate																		
ITER#10	Alloy 660 – divertor																		
ITER#11	Alloy 660 – divertor																		
ITER#12	CuCrZr divertor pipe																		
ITER#13	CuCrZr divertor pipe																		
ITER#14	Tungsten																		
ITER#15	Tungsten																		
ITER#16	Divertor XM-19																		
ITER#17	Divertor XM-19																	1	
ITER#18	Inconel 718																		
ITER#19	Eurofer 97-2																		
ITER#20	Eurofer 97-2																		
ITER#21	Divertor Al-Bronze																	Predicted and	
ITER#22	Divertor Al-Bronze																	measured	
ITER#23	SS304 – In-wall shield																	Measured, not	
ITER#24	SS304 – In-wall shield																	predicted	
ITER#25	SS316 – PF Jacket																	Predicted, not measured	
ITER#26	Alloy 660 – IWS A286																	Not predicted,	
ITER#27	SS316 - Divertor																	not measured*	

*Note that this subset of nuclides only corresponds to those measured in at least one ITER sample and that other nuclides may be predicted, but not measured in these samples. A nuclide is considered predicted if it was in the top 10 most active nuclides or its activity was >0.5 Bq/g on 28/10/2022 in FISPACT-II calculations.

- The introduction of brass depositions through the electrical discharge machining (EDM) cutting technique explained the discrepancies for ⁶⁵Zn
- High C/E values were evident in several samples containing ¹⁸²Ta
- ^{110m}Ag observed in CuCrZr unexpected
- ⁹⁵Zr difficult to measure, but aided by CSS techniques for some samples
- Generally good agreement or slightly conservative for important isotopes relevant to SDDR calculations

Next steps: installation of new ITER samples for DTE3

- A 'new' unirradiated ACT holder was loaded with some remaining ITER materials & dosimetry foils for irradiation during DTE3.
- A few of the CuCrZr, Tungsten, Eurofer, and Al-Bronze were polished to remove potential surface contaminants from machining/cutting.
- DTE3 started in late Aug
- Explore ultra-sensitive analysis methods to evaluate longer-lived (and other difficult to measure) nuclides

	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7	Channel 8	Channel 9	Channel 10	Channel 11	Channel 12	Channel 13	Channel 14	Channel 15	Channel 16	Channel 17	Channel 18	Channel 19	Channel 20	Channel 21	Channel 22	Channel 23	Channel 24	Channel 25	Channel 26
mm I	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org	Mat Org
0.1 0.2 0.3 0.4 0.5	1 ITER #5a 7	2 ITER #5c 8	3 ITER #5b 6	4 ITER #4a 6	5 ITER #4b 5	6 ITER #4c 6	12 ITER #11b 5	14 ITER #13 1	16 ITER #14 6	Fe CCFE	Fe CCFE	Fe CCFE	Fe CCFE	Fe IPPLN CCFE	Fe IPPLM IPPLM Fe 2	Fe IPPLM CCFE	18 ITER #8 5	19 ITER #6a 9	21 ITER #9 3	24 ITER #10b 6	26 ITER #7 7	Co NCSRD #16 2				
0.6 0.7 0.8 0.9 1	19 ITER #6a 4	20 ITER #6b 7	21 ITER #95	22 ITER #91	23 ITER #10a 3	24 ITER #10b 10	25 ITER #2 2	26 ITER #7 5	27 ITER #15 2	Ni CCFE	Ni CCFE	Ni CCFE	19 ITER #6a 2	20 ITER #6b 4	21 ITER #9 6	22 ITER #9 4	23 ITER #10a 7	24 ITER #10b 5	25 ITER #2 1	26 ITER #78	27 ITER #15 4	Ni NCSRD CCFE Unmarked	Ni IFJ	Ni IFJ	VERDI NCSRD	VERDI NCSRD
1.1 1.2 1.3 1.4 1.5	10 ITER #12 9	11 ITER #127	12 ITER #11b 2	13 ITER #11a 1	14 ITER #13 5	15 ITER #13 7	16 ITER #14 1	17 ITER #14.4	18 ITER #86	Co CCFE #16 5	Co CCFE #164	Co CCFE #16 3	10 ITER #12 8	20 ITER #6b 3	12 ITER #11b 3	13 ITER #11a 2	14 ITER #13 3	15 ITER #13 2	16 ITER #14 8	17 ITER #14 5	18 ITER #84	3 ITER #5b 4	Ni #10	Ni #5	6r22JET-6	6r22JET-7
1.6 1.7 1.8 1.9 2	1 ITER #5a 6	2 ITER #5c 4	3 ITER #5b 5	4 ITER #4a 4	5 ITER #4b 8	6 ITER #4c 4	7 ITER #3a 9	8 ITER #3b 8	9 ITER #3c 6	Y CCFE	Y CCFE	Y CCFE	1 ITER #5a 3	2 ITER #5c 5	3 ITER NO SPACE THICK FE FOIL	4 ITER #4a 2	5 ITER #4b 6	6 ITER #4c 5	7 ITER #3a 8	8 ITER #3b 3	9 ITER #3c 7	13 ITER #11a 3				
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3	Arrangement of ITER samples and dosimetry foils in the ACT holder for																									
			_																							

Conclusions and recommendations

- **Unique experience** has been gained in characterisation and neutron activation studies for ITER materials in a tokamak environment operating with significant nuclear conditions.
- FENDL-3.2d used for radiation transport simulations with TENDL-2017 activation libraries (IRDFF-II for dosimetry foils)
- Advanced post-irradiation analysis techniques have helped with identification of radionuclides
- C/E values generally show good agreement, but also some useful and interesting anomalous results were identified leading to several recommendations for ITER and for future work
 - Conducting independent elemental analysis is advisable for materials to improve knowledge of composition prior to supply inputs to neutronics calculation
 - Manufacturing and cutting techniques have implications with respect to surface impurities which lead to the production of additional nuclides in fusion environments
 - Further analysis using ultra-sensitive analysis techniques is advised for these, and future irradiated ITER samples focus on longer-lived nuclides relevant to fusion wastes
- A novel and valuable experimental dataset and sample set
 - Substantial contribution to our comprehension of fusion environments and offers an invaluable means of validation for neutronics methodologies
- Demonstrates that MCNP6.2 with FENDL-3.2d + FISPACT-II with TENDL-2017 can be reliably applied to predict nuclide activation in materials exposed to D-T fusion nuclear environments – provided that accurate and detailed neutronics models are used and detailed materials certificate information, including impurities, are specified
- Further work and results expected through the ongoing JET DTE3 campaign