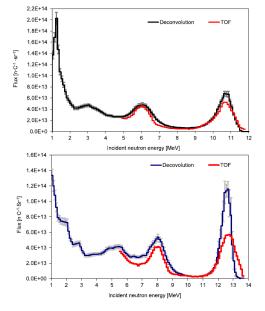
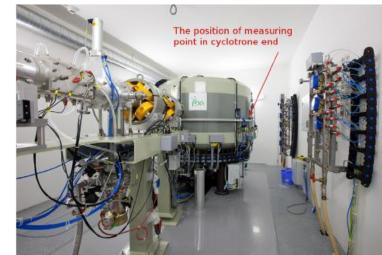
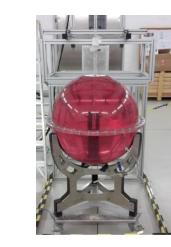
Fusion Related Activities at CV Rez Michal Kostal, LR-0 reactor lab, Rez


"Consultancy Meeting on Further Development of the Fusion Evaluated Nuclear Data Library," Vienna 30.10.2023 - 2.11.2023



Fusion related research in Rez

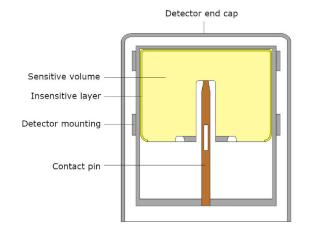
Accelerator based experiments

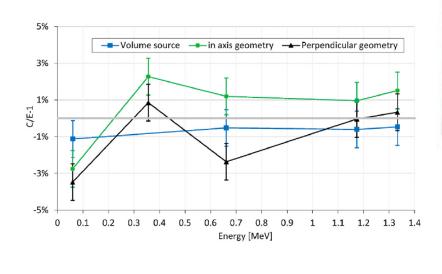


Benchmarking with ²⁵²Cf(s.f) source

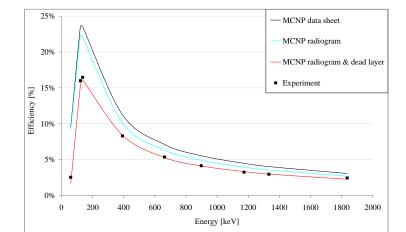
Prompt gamma issue

CVŘ Research Centre Řež

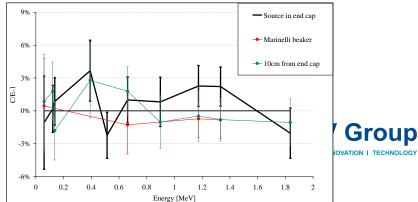

Experiments with D-T generator



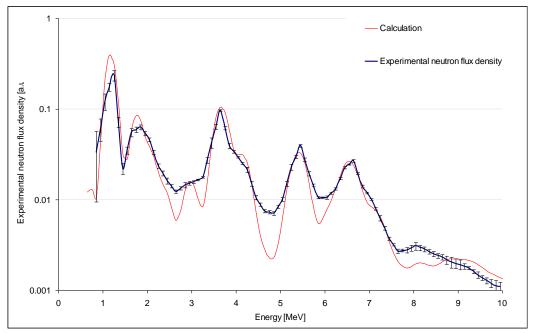
Group

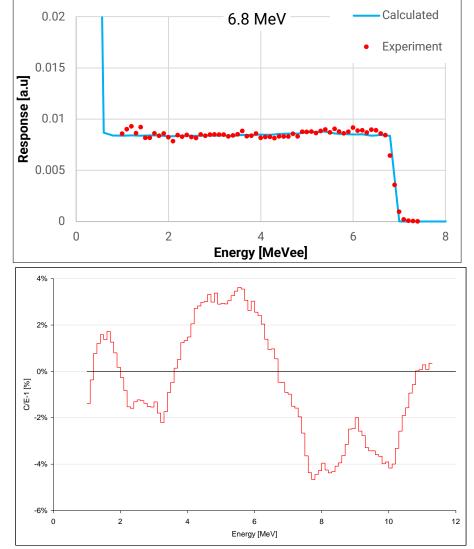

Gamma spectrometry - HPGe

- Most important is detector sensitivity
- Foil measurement
 - Mathematical model allows even large samples on detector cap
 - Determination of coincidence summing correction
- Gamma flux measurement
 - Model allows evaluation of gamma flux (only the directionality needed)



3

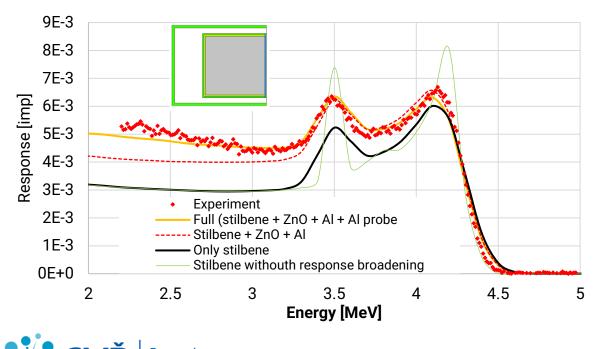


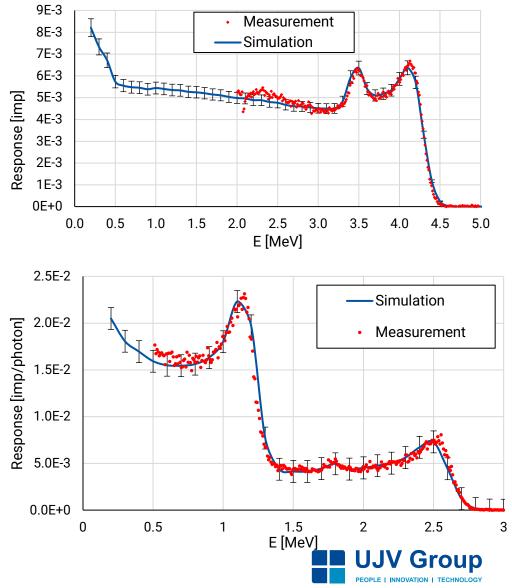


Czakoj et al., Rad. Phys. and Chem. 202 (2023) 110542

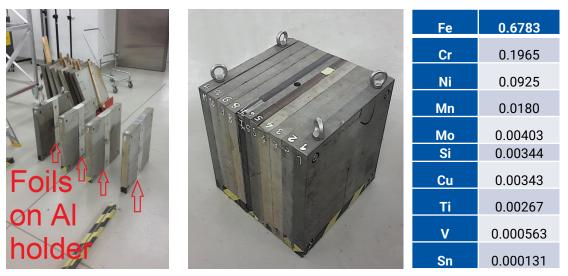
Neutron spectrometry

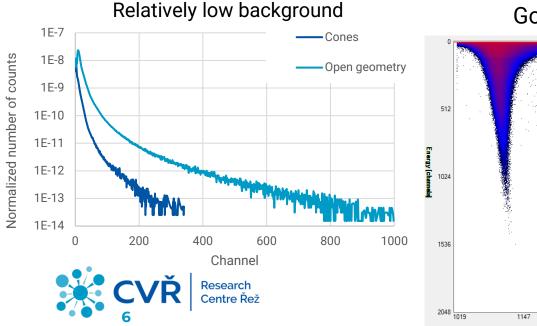
- Validation in PTB
- Validation in ²⁵²Cf
- Verified in Si filtered spectrum





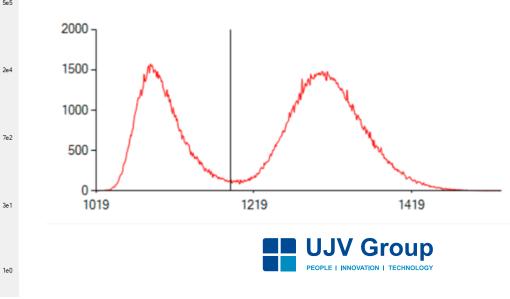
Gamma spectrometry stilbene


- Newly developed response matrix
- Simulation uses precise probe parameters
 - In gamma transport surrounding materials are essential
- Validation in AmBe + ²⁴Na

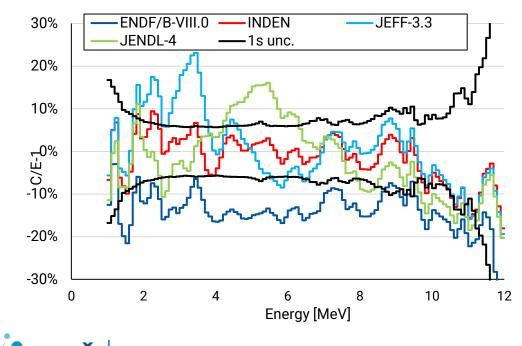


Benchmarking (stainless steel (A-320))

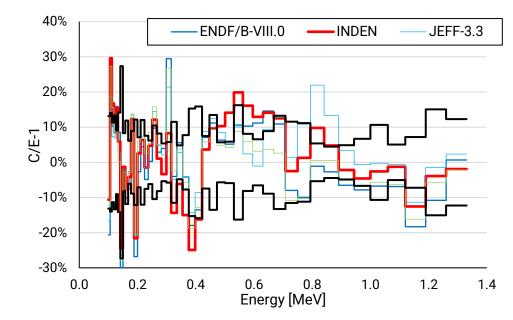
- Integral experiments are suitable for tuning of evaluations due to "low" uncertainties
- The leakage experiments with ²⁵²Cf(s.f) are ideal for validations due to low source uncertainties
- Even in fusion lower energies are essential to cover the slowing down process



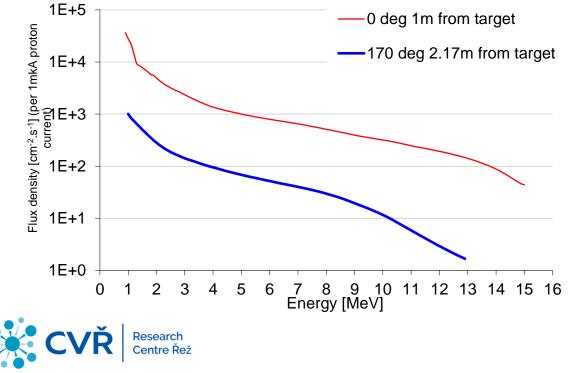
Good separation in metallic benchmarks – cut in ~ 0.8 MeV

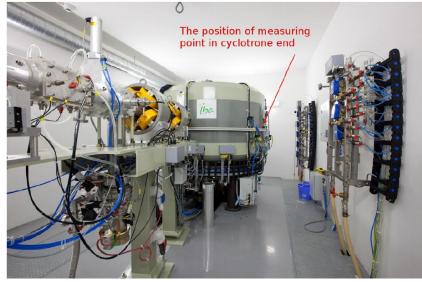

1403

Discrimination parameter [a u]


Benchmarking results

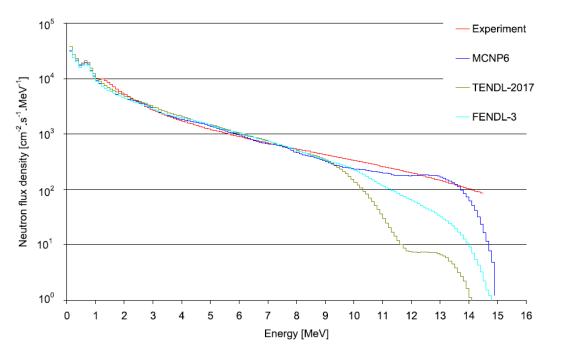
- The results for ENDF/B-VIII.0 show discrepancies
- New INDEN evaluation will be part of ENDF/B-VIII.1
- It is good to combine independent integral experiments

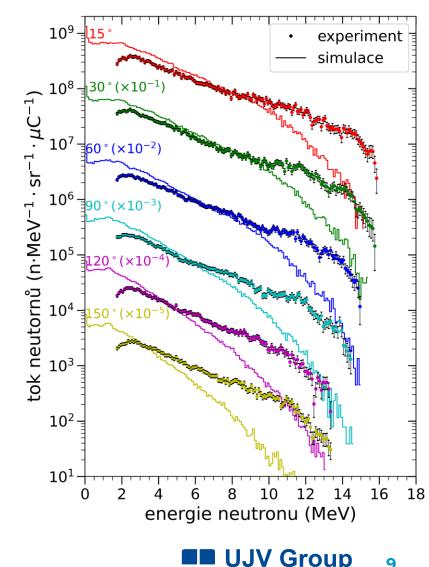

esearch


Steel						
thickness (cm)	Reaction	ENDF/B- VIII.0	INDEN	JEFF-3.3	JENDL-4	u _r (%)
5.04		4.4	-4.4	-2.8	6.0	2.6
10.08	197 Au(n v) 198 Au	3.9	-6.3	-3.7	5.7	3.0
15.12	¹⁹⁷ Au(n,γ) ¹⁹⁸ Au	3.7	-5.7	-2.6	6.0	3.1
20.16		5.4	-5.6	0.0	7.7	3.2
5.04		-8.6	-5.4	-3.4	-6.0	7.1
10.08	58Ni(n n)58Co	-8.4	-2.3	1.3	-3.0	3.3
15.12	⁵⁸ Ni(n,p) ⁵⁸ Co	-9.1	0.4	5.5	-0.4	4.0
20.16		-12.9	-0.1	5.3	-1.2	3.7
5.04	¹⁸¹ Τa(n,γ) ¹⁸² Ta	2.1	-9.5	-3.9	3.2	3.8
10.08		4.8	-4.7	-3.3	9.6	4.0
15.12		4.8	-5.6	0.0	9.4	5.4
20.16		11.3	1.7	7.1	9.0	5.3

Measurements in vicinity of ¹⁸F generators

- UJV (parent company of CV Rez) operating 3 IBA cyclotrons – one of them is in Rez
- Large set of measurements was realized
- Now IAEA CRP on leakage spectra

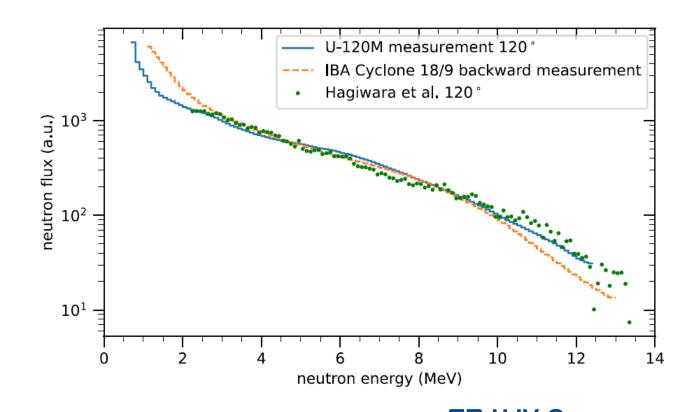

8


•Kostal et al, NIMA, 942, (2019), 162374

Measurements in cyclotron leakage beam

 Neutron leakage spectra measurement by stilbene in 1m distance

 Discrepancies are consistent with data presented in EXFOR (spectra from small target with H₂¹⁸O

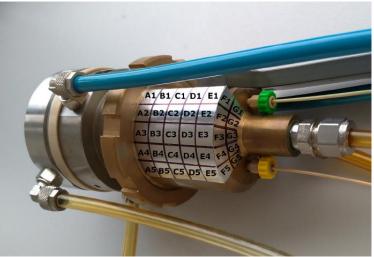


Hagiwara M. et al., Measurement of Neutrons and Gamma-Rays from Thick H1820 Target Bombarded with 18 MeV Protons. JKPS 2011;59:2035-2038

Measurements in cyclotron background

- In back-scattered neutrons significant discrepancies observed
- The measurement is reliable, as is consistent with experiment in cyclotron U-120M in Rez

Measurements on target

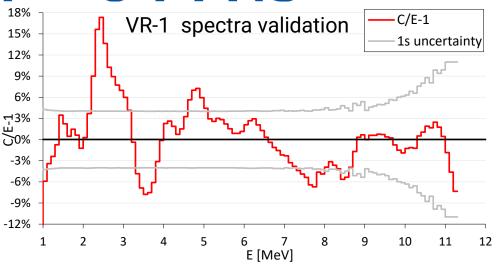

Very large set of RR measurement performed (during routine production

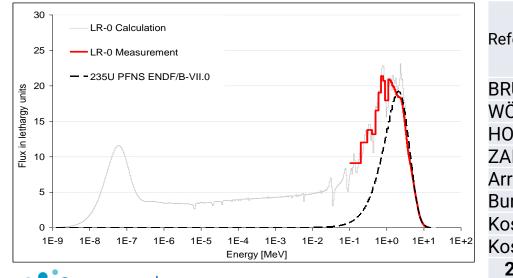
Large discrepancies in upper energy Use of new reaction ⁵⁸Ni(n,x)⁵⁷Co

	E50%	63.43	50.19	40.60	33.69	28.61	23.03	15.38	9.54	0
^{nat.} Ni(n,x) ⁵⁸ Co	5.96	3.2%	3.8%	0.3%	1.2%	-0.6%	1.6%	-2.5%	0.4%	-13.6%
^{nat.} Ti (n,x) ⁴⁷ Sc	6.05	11.8%	7.4%	4.2%	-0.4%	0.2%	-1.8%	-4.7%	-2.0%	
^{nat.} Fe (n,x) ⁵⁴ Mn	6.18	11.0%	8.2%	5.7%	4.7%	1.8%	-1.1%	-0.4%	-6.0%	-14.7%
^{nat.} Ti (n,x) ⁴⁶ Sc	8.31	-13.5%	-14.5%	-12.3%	-11.3%	-8.8%	-9.8%	-9.9%	-15.6%	
nat.Ni(n,x) ⁶⁰ Co	9.62	-44.2%	-42.3%	-40.9%	-39.0%	-35.5%	-41.0%	-28.3%	-23.9%	-33.6%
^{nat.} Fe (n,x) ⁵¹ Cr	9.85	-44.3%	-41.3%	-38.8%	-33.6%	-31.9%	-27.3%	-22.0%		
nat.Cu(n,x) ⁶⁰ Co	9.88								-28.6%	-31.2%
^{nat.} Fe (n,x) ⁵⁶ Mn	10.04	-45.4%	-43.6%	-40.1%	-35.8%	-28.6%	-27.2%	-17.0%	-25.9%	
^{nat.} Ti (n,x) ⁴⁸ Sc	10.73	-58.1%	-55.4%	-51.5%	-47.7%	-42.4%	-36.5%	-30.4%	-34.3%	
⁵¹ V (n,α) ⁴⁸ Sc	11.74	-73.6%	-69.0%	-64.0%	-58.3%	-52.3%	-45.2%	-36.6%		
^{nat.} Ni(n,x) ⁵⁷ Co	13.06	-88.7%	-85.5%	-81.1%	-71.2%	-62.7%	-47.8%	-32.2%	-38.1%	-44.0%

	G3 - 15.38° F3 - 23.03° E3 - 28.61° D3 - 33.69° C3 - 40.60° B3 - 50.19° A3 - 63.43°	MCNP 6 1 2 3 4 5	97 83 81 90	22% 36% .3% 07% .1%	B 533% 630% 616% 651% 623%	C 449% 413% 430% 411% 388%	D 301% 249% 252% 235% 275%	E 188% 185% 166% 183% 181%	F 108% 105% 95% 87% 112%	G 57% 52% 44% 40% 39%
			A	В	C		D	E	F	G
		2	37.83 37.26 37.61	28.1 27.1 26.6	5 22	3.02 2.11 2.27	21.59 22.10 21.88	22.13 22.22 22.38	23.45 23.30 23.03	24.30 24.09 25.24
CVŘ	Research Centre Řež	4 5	36.04 36.91	26.6 26.2		2.13 1.89	21.86 22.15	21.90 22.13	24.25 22.90	25.00 25.66

Kostal et al., Rad. Phys. and Chem., 184 (2021) 109475


⁵⁸Ni(n,x)⁵⁷Co validation in ²³⁵U PFNS


High threshold reaction insensitive for gamma

 Measurements was realized in VR-1 reactor (CTU university reactor with known neutron field - identity with ²³⁵U PFNS > 6 MeV)

New measurements performed in LR-0 reference field

Good agreement across measured set of SACS

Research

Reference	Mean [mb]	Difference from current value
BRUGGEMAN et al., 1974	0.216 ± 0.005	-7.1%
WÖLFLE et al., 1980	0.240 ± 0.035	3.2%
HORIBE et al., 1992	0.232 ± 0.005	-0.2%
ZAIDI et al., 1993	0.253 ± 0.015	8.8%
Arribére et al., 2001	0.275 ± 0.015	18.3%
Burianova et al., 2019	0.239 ± 0.013	2.8%
Kostal et al 2021	0.241 ± 0.015	3.7%
Kostal et al 2022	0.226 ± 0.009	-2.9%
2023 measurement in		
LR-0	0.233 ± 0.014	

Quasi monoergetic field validation

8.6 cm

Λ

1 - Aluminum holde

2 - Lithium target 3 - Graphite stopper

4 - Alcohol coolant - Bronze foil

9 - Activation foils

6 - Aluminum exit windov 7 - Steel holder

8 - Aluminum foils holder

ENDF/B-

VIII.0

2.0%

23.6%

4.8%

3.2%

18.1%

-2.5%

7.7%

1.7%

10.6%

12.2%

-6.1%

14.0%

-18.1%

Unc.

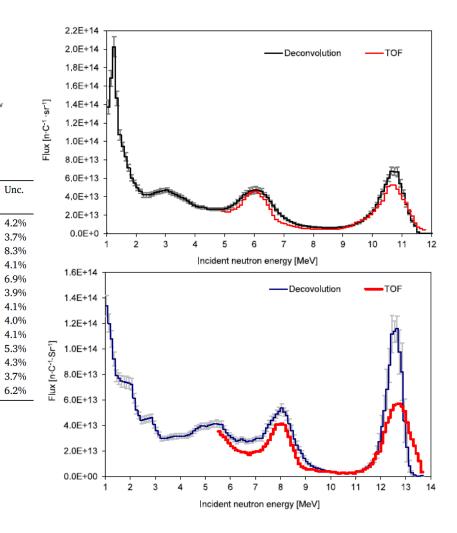
Formed from ⁷Li(p,n) reaction

Spectra measurement

Deconvolution

TOF

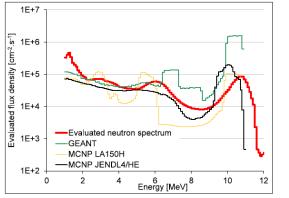
Simultaneous activation

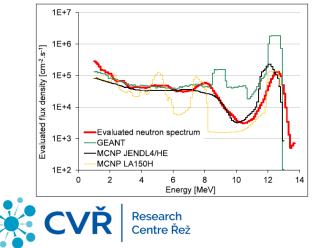

Reaction	E _{50%} [MeV]	IRDFF-II	JEFF-3.3	JENDL-4	ENDF/B- VIII.0	Unc.	_		Ω.	Protons	
⁵⁴ Fe(n,p) ⁴⁷ Ti(n,p)	7.75 8.37	-1.2% 1.3%	-3.0% 1.3%	0.6% 2.1%	-1.0% 15.9%	3.9% 6.8%	Reaction	$E_{50\%}$	IRDFF-II	JEFF-3.3	JENDL-4
⁴⁶ Ti(n,p)	10.04	7.8%	7.8%	2.1%	4.2%	4.1%		[MeV]			
⁵⁹ Co(n,p)	12.13	7.2%	-1.7%	-1.3%	4.8%	4.6%	⁵⁴ Fe(n,p)	6.78	1.9%	-2.3%	5.2%
⁶⁰ Ni(n,p)	12.24	3.8%	1.2%	7.9%	9.8%	5.3%	⁴⁷ Ti(n,p)	7.43	7.8%	8.4%	11.7%
54 Fe(n, α)	12.29	-5.4%	-17.4%	-5.5%	-61.7%	6.4%	⁴⁶ Ti(n,p)	9.61	11.7%	12.2%	9.8%
$^{24}Mg(n,p)$	12.31	3.0%	10.1%	10.1%	10.1%	5.0%	⁵⁹ Co(n,p)	10.05	3.2%	-7.1%	-5.5%
⁵⁶ Fe(n,p)	12.31	-1.7%	-2.5%	-3.9%	-1.6%	5.0%	⁶⁰ Ni(n,p)	10.25	18.1%	18.8%	20.9%
59 Co(n, α)	12.40	-2.9%	-5.0%	-3.2%	-0.9%	5.3%	⁵⁶ Fe(n,p)	10.30	-2.5%	-4.0%	0.2%
⁴⁸ Ti(n,p)	12.41	2.2%	2.3%	-3.9%	0.5%	5.4%	$^{24}Mg(n,p)$	10.37	3.7%	8.4%	10.3%
51 V(n, α)	12.50	-4.8%	-5.0%	-0.4%	1.5%	6.3%	59 Co(n, α)	10.43	-1.9%	-4.6%	1.0%
¹⁹⁷ Au(n,2n)	12.50	2.9%	4.2%	16.0%	4.2%	6.2%	⁴⁸ Ti(n,p)	10.45	-0.5%	0.1%	-1.9%
⁵⁸ Ni(n,x) ⁵⁷ Co	12.57	-	-7.7%	2.5%	-10.2%	6.6%	51 V(n, α)	10.57	-1.7%	-1.2%	8.4%
⁵⁹ Co(n,2n)	12.58	-7.2%	-6.4%	-13.5%	-4.0%	6.7%	¹⁹⁷ Au(n,2n)	10.60	-3.4%	-5.5%	22.6%
¹⁹ F(n,2n)	12.64	10.7%	40.1%	75.7%	40.1%	7.3%	⁵⁸ Ni(n,x) ⁵⁷ Co	10.89	-	-20.9%	-10.6%
⁵⁵ Mn(n,2n)	12.58	-2.8%	4.9%	-1.0%	-3.9%	6.8%	⁵⁹ Co(n,2n)	11.27	-2.7%	-2.7%	11.7%

⁵⁸Ni(n,x)⁵⁷Co validation in quasi monoenergetic field

E _{protons}	E _{50%} [MeV]	JEFF-3.3	JENDL-4	ENDF/B-VIII	Unc.
12.4 MeV	10.89	-20.9%	-10.6%	-18.1%	3.7%
14.4 MeV	12.57	-7.7%	2.5%	-10.2%	6.6%

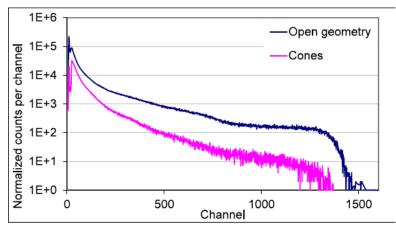
Matej et al., Rad. Phys. and Chem., 184 (2021) 109475

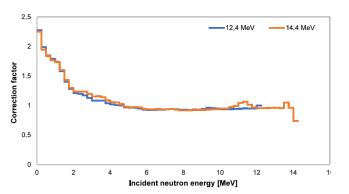


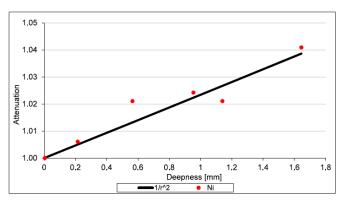


Quasi monoenergetic field

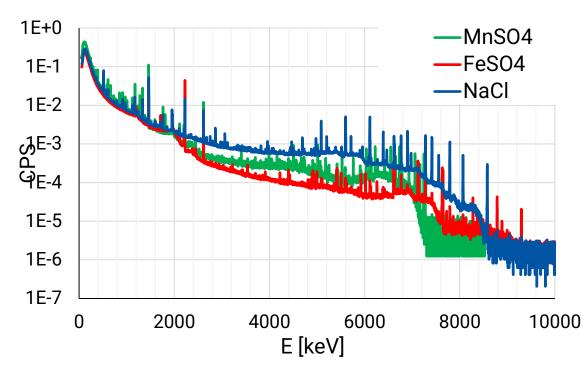
2


Need of experimental characterization The calculation don't agree with measured spectra (while TOF and deconvolution)

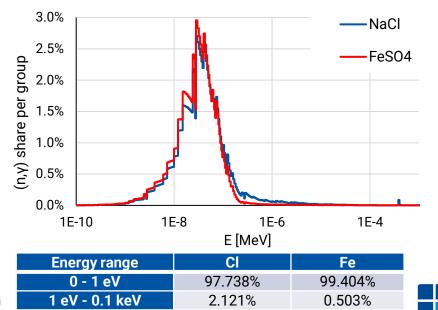




Background effect Clasical estimation by room effect using cones



Material and geometrical correction It is reflection of fact, that spectra is measured in position diffrerent from foils



Prompt gamma measurement

- Measurement of leakage gammas with HPGe and stilbene detectors
- Ideal geometry, because Cf inside is standart
- Due to water solvent good moderation
- SINBAD benchmarking

0.134%

0.007%

0.053%

0.039%

0.1 keV - 10 keV

10 keV - 20 MeV

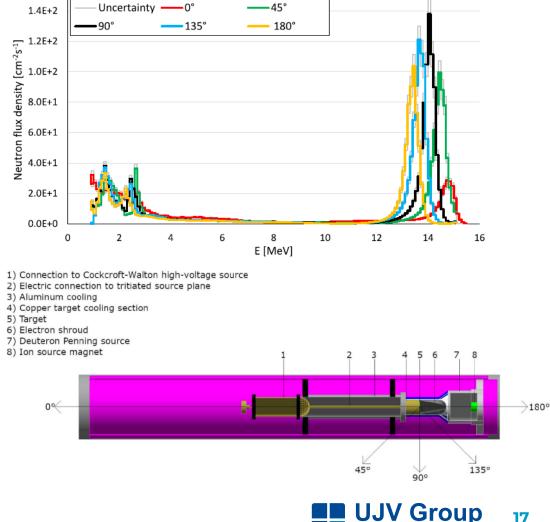
UJV Group

INNOVATION | TECHNOLOG

Prompt gamma NaCl case

- Significant overprediction across libraries
- Cl is important in design of new reactors
- Importance in PGNAA issues
- Part of CRP (F40016 -Measurement of Prompt Capture Gamma Coming from Chlorine and Iron Neutron Capture)

		Measured flux	Measurement	C/E	C/E-1	
	E [MeV]	[photon/cm ^{2.} s]	uncertainty	ENDF/B-VIII.0	JEFF-3.3	uncertainty
	1.601	1.12E-02	3.2%	6.8%	2.5%	4.6%
	2.876	1.90E-03	11.8%	94.2%	118.6%	12.3%
	3.016	3.87E-03	12.1%	99.5%	127.8%	12.5%
	3.116	5.49E-03	10.1%	34.3%	46.3%	10.6%
	5.703	5.01E-03	9.1%	4.4%	23.7%	9.7%
	5.715	6.42E-02	2.6%	23.4%	19.0%	4.2%
	5.734	3.52E-03	12.6%	80.7%	108.9%	13.0%
	5.903	1.28E-02	4.8%	28.6%	26.8%	5.8%
	6.111	2.87E-01	2.6%	5.6%	8.3%	4.2%
	6.620	1.08E-01	2.5%	13.5%	15.9%	4.1%
	6.628	5.82E-02	2.7%	21.6%	28.9%	4.3%
.	6.978	3.08E-02	4.0%	20.9%	23.3%	5.2%
d	7.414	1.49E-01	2.5%	15.3%	21.7%	4.2%
	7.790	1.26E-01	2.5%	14.1%	16.7%	4.2%
	8.579	4.31E-02	2.8%	16.0%	19.0%	4.3%



Characterization of compact generators

- Characterization of spectra (opposite geometry than assumed)
- Characterization of lower peaks flux by ¹¹⁵In(n,n')
- Used in measurement of dosimetry cross sections

	IRDFF- II	ENDF/B- VIII.0	JEFF- 3.3.	JENDL- 4	CENDL- 3.2.
^{nat.} Ti(n,x) ⁴⁷⁸ c	2.3	-11.0	-7.3	8.5	-19.9
⁵⁸ Ni(n,p)	-1.2	-4.8	5.4	-11.5	3.2
⁴⁸ Ti(n,p)	0.8	-4.4	0.7	-2.4	-1.7
⁹³ Nb	-1.4	-	_	-	_
(n,2n)92Nb*					
⁸⁹ Y(n,2n)	6.2	6.3	6.3	7.5	9.6
⁵⁶ Fe(n,p)	1.6	1.4	2.1	1.1	1.4
¹⁹⁷ Au(n,2n)	6.7	6.3	6.3	8.5	-0.3
²⁴ Mg(n,p)	3.9	6.1	6.1	6.1	8.3
⁵⁸ Ni(n,x) ⁵⁷ Co	2.6	2.8	4.6	16.9	1.4
⁹⁰ Zr(n,2n)	-7.5	-7.1	-6.4	-3.8	-3.8
⁵⁹ Co(n,α)	4.5	1.8	-0.1	7.7	0.5
⁵⁹ Co(n,2n)	3.0	2.2	3.8	0.9	9.0
⁵⁹ Co(n,p)	-4.8	-4.5	-5.0	0.0	0.8
⁵¹ V(n,α)	0.4	_	_	_	_
55Mn(n,2n)	7.1	-0.1	10.9	6.0	6.0
¹⁶⁹ Tm(n,2n)	-3.0	-5.8	-4.8	-6.3	_
⁴⁶ Ti(n,p)	-5.0	7.1	-5.5	-5.2	-8.1

INNOVATION | TECHNOLOGY

Czakoj et al., NIMA., 1034, (2022), p. 166837 Kostal et al, Ann. of Nucl. En., 191, (2023), p. 109904

Conclusions

Large portion of fission related research in fission field has large overlap into fusion

The Cf benchmark experiment is valuable tool for validation of FENDL, as it covers the lower energies – for example breeding blanket design

The neutron leakage during ¹⁸O(p,n)¹⁸F production is issue, and the characterization of leakage spectra is not satisfactory

High energy gamma is issue. The methodology developed in Rez (as companion of neutron spectra evaluation) is suitable for characterization of gamma fluxes

Thank you for attention

Michal Kostal Michal.Kostal@cvrez.cz

Future plans

