

Issues to the next FENDL

Japan Atomic Energy Agency Chikara Konno

Contributor : Saerom Kwon (QST)

Consultancy Meeting on the Further Development of the Fusion Evaluated Nuclear Data Library (FENDL) 30 October to 2 November 2023 IAEA Headquarters, Vienna, Austria

Contents

- **1. Introduction**
- 2. Damage production energy cross section issue
- 3. Proton ACE file issue
- 4. Conclusion

1. Introduction

- 2. Damage production energy cross section issue
- 3. Proton ACE file issue
- 4. Conclusion

Introduction -(1)

#Δ

❑ We examined FENDL-3.2b and its ACE file in detail and confirmed that the following problems in FENDL-3.1d ACE file which we had pointed out were solved in FENDL-3.2b ACE file.

 Negative probability table (p-table) of heating number

Introduction -(2)

 Negative or too large heating number and damage production energy cross section

#5

Introduction -(3)

#6

However the following issues still remain and are newly found in FENDL-3.2b ACE files.

- Too small damage production energy cross section above 20 MeV or a few MeV
- Inadequate ACE files of proton sub-library
- The above issues are explained here (Dr. Nakayama and Dr. Kwon present other issues in this meeting).

1. Introduction

2. Damage production energy cross section issue

3. Proton ACE file issue

4. Conclusion

Nuclei from JENDL-4.0/HE -(1) #8

As pointed out in 2018 FENDL meeting, ACE files of nuclei from JENDL-4.0/HE in FENDL-3.1d have sharply small damage production energy cross section data above 20 MeV.

S. Kwon et al., Problems of DPA cross-sections above 20 MeV in FENDL-3.1d found in A-FNS neutronics analysis, J. Nucl. Sci. Technol., 57(2020), 344 – 351.

https://doi.org/10.1080/00223131.2019.1661306

Nuclei from JENDL-4.0/HE -(2)

#9

We specified that no energy distribution data of several residual nuclei above 20 MeV in JENDL-4.0/HE caused the problem.

□ This issue has not been improved in FENDL-3.2b because it is impossible to add energy distribution data of several residual nuclei above 20 MeV to JENDL-4.0/HE.

Recently we released ACE files of JENDL-4.0/HE (https://rpg.jaea.go.jp/main/en/ACE-J40HE/index.html), where damage production energy cross section data above 20 MeV were replaced with those of TENDL-2019 etc. for this issue.

C. Konno, New JENDL-4.0/HE neutron and proton ACE files, J. Nucl. Sci. Technol. (online). https://doi.org/10.1080/00223131.2023.2237970

Nuclei from JENDL-4.0/HE -(3) #10

- □ Recently JENDL-5 and its ACE files were released (<u>https://rpg.jaea.go.jp/main/en/ACE-J50/</u>).
- □ JENDL-5 supersedes JENDL-4.0/HE and has energy distribution data of all residual nuclei above 20 MeV, which solves this issue.

O. Iwamoto et al., Japanese evaluated nuclear data library version 5: JENDL-5, J. Nucl. Sci. Technol., 60 (2023), 1-60. https://doi.org/10.1080/00223131.2022.

2141903

□ Thus we recommend to adopt data of JENDL-5 for nuclei from JENDL-4.0/HE in the next FENDL.

Nuclei from JEFF-3.1.1 -(1)

❑ As also pointed out in 2018 FENDL meeting, damage production energy cross section data above several MeV of 13 nuclei (⁴⁵Sc, ⁵⁸Fe, ^{70,72-} ^{74,76}Ge, ¹⁰³Rh, ^{204, 206-208}Pb, and ²⁰⁹Bi) from JEFF-3.1.1 were much smaller than those in the other nuclear data libraries, which has not been resolved in FENDL-3.2b.

S. Kwon et al, Problems of DPA cross-sections above 20 MeV in FENDL-3.1d found in A-FNS neutronics analysis, J. Nucl. Sci. Technol., 57(2020), 344 – 351. https://doi.org/10.1080/00223131.201 9.1661306

#11

Nuclei from JEFF-3.1.1 -(2)

#12

❑ We specified that the problematic 13 nuclei from JEFF-3.1.1 have incorrect energy distribution data of recoil nucleus in the inelastic scattering to continuum states (file=6, mt=91) and/or no energy distribution data of several residual nuclei above 20 MeV such as JENDL-4.0/HE, which caused this issue.

- □ We recommended that the problematic nuclei from JEFF-3.1.1 should be replaced with those from JEFF-3.3, which do not have this issue
- However FENDL-3.2b is still the same as FENDL-3.1d for the nuclei.
- □ The problematic 13 nuclei from JEFF-3.1.1 should be replaced with those from JEFF-3.3.

- **1. Introduction**
- 2. Damage production energy cross section issue

3. Proton ACE file issue

4. Conclusion

Proton files from JENDL/HE-2007 -(1) #14

JENDL/HE-2007, JENDL-4.0/HE and JENDL/DEU-2020 adopt LAW=7 (laboratory angle-energy law) for File 6 MT=5.

- Original NJOY2016 produces ACE files of LAW=61 (tabular angular distribution) from ENDF-6 files with LAW=7.
- □ MCNP6.2 and earlier version MCNPs can treat neutron ACE files of LAW=61 correctly.

However they cannot do charged particle ACE files of LAW=61 correctly while they can do them of LAW=67 (laboratory angle-energy law).

T. Sasa et al., Continuous Energy Cross Section Library for MCNP/MCNPX based on JENDL High Energy File 2007, JAEA-Data/Code 2008-022.

Proton files from JENDL/HE-2007 -(2) #15

- Dr. Kosako made a NJOY patch for NJOY99.259 to produce not ACE files of LAW=61 but those of LAW=67, but the patch is not available.
- The official ACE files of LAW=67 of JENDL/HE-2007, JENDL-4.0/HE and JENDL/DEU-2020 were produced by using NJOY with the patch.
- □ FENDL-3.2b proton and deuteron ACE files from JENDL-4.0/HE and JENDL/DEU-2020 produced with the patch were provided from JAEA to IAEA.
- However FENDL-3.2b proton ACE files from JENDL/HE-2007 have angular distributions of LAW=61.

Proton files from JENDL/HE-2007 -(3) #16

How different are MCNP6.2 calculation results with ACE files of LAW=61 and LAW=67? → Very large !

Carbon thick target yield expt. with 50 MeV proton

T. Aoki et al., Nucl. Sci. Eng. 146, 200–208 (2004).

Proton files from JENDL/HE-2007 -(4) #17

- □ JENDL-5 was released in 2021.
- □ We modified NJOY2016.65 for JENDL-5 including charged particle sub-libraries.
- The NJOY patch is available with JENDL-5 ACE files from https://rpg.jaea.go.jp/main/en/ACE-J50/.
- □ The patch also has a function to produce not ACE files of LAW=61 but those of LAW=67.
- □ FENDL-3.2b proton files from JENDL/HE-2007 should be replaced with JENDL-5 and/or should be reprocessed by using NJOY2016.65 with the patch for JENDL-5, where LAW=67 is adopted.

- **1. Introduction**
- 2. Damage production energy cross section issue
- **3. Proton ACE file issue**
- 4. Conclusion

Conclusion -(1)

#19

□ We examined FENDL-3.2b in detail and found the following issues and countermeasures.

- ACE files of nuclei from JENDL-4.0/HE in FENDL-3.2b have sharply small damage production energy cross section data above 20 MeV.
 - → Files from JENDL-4.0/HE in FENDL-3.2b should be replaced with those of JENDL-5.
- Damage production energy cross section data of 13 nuclei from JEFF-3.1.1 are too small above a few MeV.
 - → Files from JEFF-3.1.1 in FENDL-3.2b should be replaced with those of JEFF-3.3.

Conclusion -(2)

#20

 FENDL-3.2b proton ACE files from JENDL/HE-2007 have angular distributions of LAW=61.

→ FENDL-3.2b proton files from JENDL/HE-2007 should be replaced with JENDL-5 and/or should be reprocessed by using NJOY2016.65 with the patch for JENDL-5, where LAW=67 is adopted.

We hope that the above issues are solved in the next FENDL.

Thank you for your attention!