

Current FENDL Activities at the University of Wisconsin-Madison

Tim Bohm

University of Wisconsin-Madison, *tim.bohm@wisc.edu*

FENDL Consultants Meeting 30 October-2 November, 2023 Vienna, Austria (hybrid)

Bohm

1

Outline

- 1) Impact of INDEN Fe-56 XS in ITER 1-D
- 2) Impact of INDEN Fe-56 XS in FNSF 1-D
- 3) Impact of INDEN F-19 XS in flibe blanket 1-D
- 4) WW generation to speed 1-D calculational benchmarks
- 5) Future Work

Goal of this work

standard MCNP id

- Look at the neutronics impact of using the updated neutron libraries in a realistic model of fusion systems using MCNP
- Libraries examined:
 - <u>Neutron:</u>
 - 1. FENDL-2.1 (21c)
 - 2. FENDL-3.1d (31c)
 - 3. FENDL-3.2b (32c)
 - 4. ENDF/B-VIII.0 (00c)
 - 5. New INDEN evaluations for Fe-56, F-19 ←
 - Photon:
 - 1. mcplib84 (84p)**

Previous work has shown that mcplib84 produces results similar to the newer MCNP eprdata12 library, the latest MCNP photon library (eprdata14) has not been tested yet

New work

* Bohm T.D, Sawan M.E. "Neutronics calculations to support the Fusion Evaluated Nuclear Data Library (FENDL)", Fusion Science and Technology, on-line early access August 2021. **Bohm T.D, Sawan M.E. "The impact of updated cross section libraries on ITER neutronics calculations", Fusion Science and Technology, Vol 68, p. 331-335, 2015.

Bohm FENDL Meeting 2023

ITER 1-D Cylindrical Calculation Benchmark

- Based on an early ITER design
 Developed for the FENDL evaluation process
- Simple but realistic model of ITER with the Inboard and Outboard portions modeled with the plasma in between
- D-T fusion (14.1 MeV neutrons)
- Flux (neutron and photon), heating, dpa, and gas production calculated

M. Sawan, FENDL Neutronics Benchmark: Specifications for the calculational and shielding benchmark, INDC(NDS)-316, December 1994

ITER 1-D Cylindrical Benchmark continued

Plasma

WISCONSIN

Preliminary Results: Neutron Flux ITER

• FENDL-3.2b and FENDL-3.2b+fe56e80X29r67 quite close

Preliminary Results: Total Nuclear Heating ITER

FENDL-3.2b and FENDL-3.2b+f56e80X29r67 quite close

FNSF 1-D Cylindrical Computational Benchmark

Fusion Energy Systems Studies Fusion Nuclear Science Facility (FESS-FNSF)
 Breeding Zone: He cooled steel structure (90 w/o Fe, 7.5 w/o Cr, 2 w/o W, 0.2 w/o V),
 PbLi breeder (Dual Coolant Lithium Lead-DCLL)

- Includes SiC flow channel inserts in breeding zone
- Includes face plates and filler for SR, VV, LTshield
- Includes IB, OB magnet and cryostat
- MCNP materials created with PyNE
 - T. Bohm et al. "Initial Neutronics Investigation of a Liquid Metal Plasma Facing Fusion Nuclear Science Facility, *Fusion Science and Technology*, 2019.

WISCONSIN

FNSF 1-D Cylindrical Computational Benchmark

	47	63	7.3 2	10	3	17	3	2	2	6		2 1	2.5	15	2.5	6	2	4	3.18	3	3.8 (0.2 10	0.21					
	Coil case 100% SS316LN	Winding pack 43% Cu, 29% JK2LB Steel, 14% Liq. He, 6% Nb3Sn, 8% Hybrid Ins.	Coil case 100% SS316LN Thermal shield 50% JK2LB Steel, 50% He	gap	LTshield back plate 100% 3CrFS	LTshield filler 37% WC, 33%	Water, 30% 3CrFS LTshield front plate 100% 3CrFS	gap	VV back plate 100% 3CrFS	VV filler 85% WC, 10% He, 5%	3CrFS	VV front plate 100% 3CrFS gap	SR back plate 100% MF82H	SR filler 69% WC, 26% He, 5% MF82H	SR front plate 100% MF82H	He manifold 70% He, 30% MF82H	Backwall 80% MF82H, 20% He	Breeding zone PbLi, MF82H	channel walls, He coolant, SiC flow channel inserts	(see sub-figure)	FW 66% He, 34% MF82H	FW armor 91% W Scrape-off laver 100% void		Plasma		Plasma		
r=10	09.7						r=26	2				r=2	T 275									R=	▲ =360	.39				
				ç	9.59	0.2 3.	8 93.18	3	5	2	2	14	2	232.03	3	4	3	2	3	11	3	44.97	7 2	12	63	35	150	40
		Plasma		Plasma	Scrape-off layer 100% void	FW armor 91% W FW 66% He, 34% MF82H	Breeding zone PbLi, MF82H channel walls, He coolant, SiC flow channel inserts (see sub-figure)	Backwall 80% MF82H, 20% He	He manifold 70% He, 30% MF82H	Kshell 98.87% W, 0.22 % C, 0.88% Ti	SR front plate 100% MF82H	SR filler 69% BMF82H, 26% He, 5% MF82H	SR back plate 100% MF82H	gap	VV front plate 100% 3CrFS	VV filler 95% He, 5% 3CrFS	VV back plate 100% 3CrFS	gap	LTshield front plate 100% 3CrFS	LTshield filler 45% BMF82H, 50% Water, 5% 3CrFS	LTshield back plate 100% 3CrFS	gap	Thermal shield 50% JK2LB Steel, 50% He	Coil case 100% SS316LN	Winding pack 43% Cu, 29% JK2LB Steel, 14% Liq. He, 6% Nb3Sn, 8% HVbrid Ins.	Coil case 100% SS316LN	gap	Cryostat 20% MF82H
				R=	 600.2	23							R=7	35				R=9	79.0	3						R=1	1 1153	

Bohm FENDL Meeting 2023

2	0.2	0.5	18.94	0.5	0.2	2.5	0.2	0.5	18.94	0.5	0.2	3.8	0.2	
Backwall 80% MF82H, 20% He	Thin layer 100% PbLi	Flow Channel Insert 100% SiC	Channel 100% PbLi	Flow Channel Insert 100% SiC	Thin layer 100% PbLi	Cooling channel wall 58% MF82H, 42% He	Thin layer 100% PbLi	Flow Channel Insert 100% SiC	Channel 100% PbLi	Flow Channel Insert 100% SiC	Thin layer 100% PbLi	FW 66% He, 34% MF82H	FW armor 91% W	Plasma

>OB Breeder zone similar but has 4 PbLi channels

Preliminary Results: Neutron Flux FNSF

• FENDL-3.2b vs. FENDL-3.2b+fe56e80X29r67 generally good agreement *except* deviation at OB LTshield

OB LTshield uses water cooled borated steel filler

Preliminary Results: Total Nuclear Heating FNSF

Max. relative error IB CC, WP 3-5%

Max. relative error OB CC, WP 1-2%

- FENDL-3.2b vs. FENDL-3.2b+fe56e80X29r67 generally good agreement in heating
- Not seeing deviation at OB LTshield as observed with neutron flux
 - need to refine statistics at deep locations
- Generally good agreement observed for TBR, dpa, and helium production

1-D Cylindrical Computational Benchmark (flibe blanket)

- \blacktriangleright Molten salt 2(LiF)-1(BeF₂) sometimes proposed as a liquid blanket Commonwealth Fusion Systems reactor design
- INDEN provides a new XS for ¹⁹F: https://www-nds.iaea.org/INDEN/
- Created 1-D model based on FESS-FNSF but modified the blanket:
 - Breeding Zone: 2 cm Be multiplier layer, flibe breeder tank

Results: Neutron Flux (impact of INDEN ¹⁹F XS)

Max. relative error <0.6% except CC <2.5% and WP 3.6%

- Neutron flux: higher neutron fluxes behind the flibe breeder regions
 - > 10-20% higher flux behind the IB flibe breeder zone
 - > 20-70% higher flux behind the OB flibe breeder zone

Possible Impact on Reactor Design: (due to change in ¹⁹F XS in flibe blanket)

- For this 1-D model, the e-fold attenuation distance for neutron flux in the SR shield (MF82H face plates + He cooled WC filler) was 14 cm
 Added shielding required to compensate for f19j4HE_zc:
 - IB: 3 cm
 - OB: 17 cm

Note: a candidate Commonwealth Fusion Systems flibe immersion blanket design has ~25 cm thick IB blanket and 110 cm thick OB blanket

Region	FENDL-3.2b	FENDL-3.2b +INDEN f19j4HE_zc	Ratio	FENDL-3.2b +INDEN f19e80_zt9	Ratio
IB	0.39594	0.39861	1.007	0.39769	1.004
OB	0.90622	0.92137	1.017	0.91543	1.010
Total	1.3022	1.3200	1.014	1.31312	1.008
			/		リー _ ノ

• Total TBR:

- increases by 1.4% for f19j4HE_zc in flibe blanket
- increases by 0.8% for f19e80_zt9 in flibe blanket
- while small, this is good for reactor design since flibe designs tend to need more margin to be tritium self-sufficient

Other work on 1-D Benchmark Models: Variance Reduction

FNSF 1-D

The cylindrical 1-D models are more computationally efficient than the detailed 3-D CAD models but can be improved using

variance reduction:

Weight windows are a good option:

FNSF 3-D CAD

- but potentially need many sets of WWs since many different neutronics responses of interest (thresholds at different energies, neutrons & photons)
- WW Generation options (for global VR):
 - 1. ADVANTG (FW-CADIS)
 - rigorous method uses discrete ordinates transport (forward and adjoint)
 - requires additional code package
 - 2. MAGIC
 - uses MC responses (flux) from previous run to "guess" WWs (essentially splitting to keep the particle population up through highly attenuating regions)
 - generally a few iterations needed
 - no additional code package needed

WW Generation: start simple

Results:

- Neutrons tracks now easily making it to deep regions in model
- Many more tallies pass the 10 statistical checks (for the same nps value)
- The FOM is much higher for neutron responses in deep locations:
 - Cu dpa at IB winding pack: FOM ratio=207
 - Total neutron flux at IB coil case 2: FOM ratio=8800
- The FOM is typically a bit lower at shallow locations

WW Generation: Next Steps

• MAGIC

- Repeat with a few neutron energy groups: (e.g. Eupper=0.25, 1.25, 5, 20 MeV)
- Consider adding photon WWs
- Consider adding other tallies as "drivers"
- ADVANTG
 - use FW-CADIS

Refine WW Generation method for 1-D benchmarks

Future Work

Develop more 1-D benchmarks (e.g.):

- Updated ITER design
- EU-DEMO HCPB, WCLL
- UK-STEP
- General Atomics GAMBL (SiC, PbLi waterfall blanket)
- CFS flibe immersion blanket
- Inertial Confinement designs
- Perform Sensitivity/Uncertainty analysis of important neutronics responses for variety of 1-D models
- > Look at activation responses with various activation libraries

Questions?

This work was funded in part by the U.S. Department of Energy Office of Fusion Energy Sciences under project DE-SC 0017122.

20