

Recent Light-Element Standards-Related Work at Los Alamos

TM on Neutron Data Standards 2023 IAEA, Vienna, Austria

G. Hale, M. Paris, and H. Sasaki

2023 October 12

LA-UR-XXXXX

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA.

10/11/23 ·

Updated R-matrix Analyses/Evaluations

- n-p [N-N system] scattering up to 250 MeV
- n+³He cross sections up to 20 MeV
- n+12C [13C system] scattering up to 8 MeV

Charge-Independent Analysis of N-N System up to 100 MeV

	Channel		a _c (fm)	l _{max}			
		p+p		3.26	3		
		n+n		3.26	3		
n+p		⊦p	3.26	3			
		γ+	-d	84.6	1		
	Reaction	# Pts.	χ ²		Observabl	e Types	
	p(p,p)p	667	1218	σ(θ), A _y (p), C _{x,x} , C _{y,y} , K _x ^{x'} , K _y ^{y'} , K _z ^{x'}			
	n(n,n)n	1	0	$\sigma_{int}(a_0)$			
	p(n,n)p	5260	4687	σ _τ , σ(θ), Α _γ (n), C _{γ,γ} , K _γ ^{γ′}			
	p(n,γ)d	82	133	$\sigma_{int}, \sigma(\theta), A_y(n)$			
	d(γ,n)p	84	106	$σ_{int}$, $σ(θ)$, $Σ(γ)$, P _γ (n)			
	Total	6094	6144	19			

free parameters = $50 \Rightarrow \chi^2/\text{degree of freedom} = 1.0165$

Additional NN data to 250 MeV Preliminary

- pp
 - Angular dists. to 250 MeV
- np
 - Integrated to 250 MeV
 - Snapshot of current fit status (to 150 MeV)

New Evaluation of n+³He Reactions Submitted for ENDF/B-VIII.1

- Evaluation was essentially ENDF/B-VII.1 carried over to ENDF/B-VIII.0.
- Angular distributions existed only for for elastic scattering (MT=2).
- Added angular distributions and modified integrated cross sections for the ³He(n,p)³H and ³He(n,d)²H reactions.
- Added angular distributions for the ³He(n,γ)⁴He reaction consistent with the integrated cross section that had been revised in ENDF/B-VII.1.

Changes in the n+³He Reaction Cross Sections

^{1/23 7}

¹³C System Analysis

channel	a _c (fm)	I _{max}
n+12C(0+)	4.47	4
n+ ¹² C*(2+)	6.10	1
α+ ⁹ Be	5.00	3
γ + ¹³ C	50.	1

Reaction	Energies (MeV)	# data points	Data types
¹² C(n,n) ¹² C	$E_n = 0 - 8.0$	7618	$σ_{T}$, $σ(θ)$, $A_{n}(θ)$
¹² C(n,n') ¹² C	$E_n = 4.8 - 7.0$	950	σ _{int} , σ(θ)
¹² C(n,α) ⁹ Be	En = th – 8.5	19	σ_{int}
¹² C(n,γ) ¹³ C	$E_n = E_{thml} - 0.2$	7	σ_{int}
total	5556	8594	4

 χ^2 per degree of freedom = 1.40

180

12c(n.n)12c do/dQ E= 225.000 keV

*10⁻³ lated at E= 0.475 ---tion 12C(n,n) En=0.475 lang 00/00 300

12c(n.n)12c do/dQ E= 475.000 keV

 $\theta_{\rm CM}$

150 180

180

-50

 $12c(n,n)12c A_{i}(n) E= 1.120 \text{ MeV}$

180

150

n,n) En=1.448 lang2 n,n) En=1.450 wills

90 120 150 180

 $\theta_{\rm CM}$

12c(n.n)12c do/dΩ E= 1.448 MeV

ated at E= 1.448 oss section 12C(n

240 10⁻³

220

200

70 p/00 180

160

140

120 L

30

.

 θ_{CM}

0.5

0.4

0.3

(u) 0.2 V 0.1

0.0

-0.1

-0.2

30 60 90 120 150

alculated at E= 1.450

30 60 90 120 150 180

 θ_{CM}

120 L

30 60 90 120 150 180

12c(n,n)12c A_v(n) E= 1.400 MeV

calculated at E= 1.400 Ay 12C(n,n) En=1.400 lane2

0.6

0.5 .

240

22

뎡 ²⁰⁰

160

140

120

12c(n,n)12c do/dΩ E= 1.950 MeV

culated at E= 1.950 moss section 12C(n,n) En=1.950 la

 $\theta_{\rm CM}$

12c(n.n)12c do/dΩ E= 1.990 MeV

220 10⁻³

180

140

120

100

30 60 90 120 150 180

00 160

200 -

 θ_{CM}

12c(n,n)12c Ay(n) E= 2.000 MeV

calculated at E= 2.000 Ay 12C(n,n) En=2.000 Iz

0.6

0.4

0.2

-0.2

-0.4

30 60 90 120 150

(L) A 0.0

200 10⁻³

190

220

200

30 60 90 120 150

 $\theta_{\rm CM}$

90 120 150

180

12c(n,n)12c dx/dt2 E= 3.500 MeV

n+12C Elastic and Inelastic Scattering

180

¹²C(n,n₁)¹²C^{*} and Integrated Cross Sections

Status of the Light-Element Standards

- Extension of N-N scattering analysis to 250 MeV is in progress. New data are being added even in the energy range up to 100 MeV. Mark has Dick Arndt's NN data base, and will add any data from it we are missing.
- n-³He: A rather extensive update of the n+³He evaluation was submitted for ENDF/B-VIII.1. It is based at low energies on our ⁴He R-matrix analysis, and at higher energies on an experimental evaluation done by Drosg and Otuka. Since that evaluation agrees so well with our R-matrix results in the region of overlap, it was decided to use it at all but the lowest energies. No changes were made in the ³He(n,p) cross section below 200 keV (standard up to 50 keV). Angular distributions calculated from the R-matrix analysis were added for the ³He(n,γ)⁴He reaction.
- n-⁶Li: Still working to get a reasonable fit to all data up to E_n = 8 MeV. The presence of several broad resonances in the MeV region hinders the determination of the ⁶Li(n,t) cross section to standards accuracy (~1%), even at energies as low as 1 MeV. We need better data up to at least 5 MeV.

Status of the Light-Element Standards, cont.

- n-¹⁰B: New work on the ¹¹B system has not yet been started. There is a lot of new data to add for the n+¹⁰B and α+⁷Li reactions, but the proliferation of excited-state n+¹⁰B* channels will probably limit the upper range of the R-matrix analysis to a few MeV.
- n-¹²C: New elastic and inelastic scattering data from Vanhoy support the results of the present analysis. New ¹²C(n,n')¹²C* data from the CoGNAC detector system is well described except in the region of a 7/2⁻ resonance around 6.3 MeV. An attempt to resolve this difference by adding the α+⁹Be channel to the analysis has thus far not been successful.

