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The Prompt Fission Neutron Spectrum (PFNS) is an 
important nuclear data quantity

• Gives the distribution of neutrons 
emitted promptly from fission as 
a function of outgoing neutron 
energy
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The Prompt Fission Neutron Spectrum (PFNS) is an 
important nuclear data quantity

• Gives the distribution of neutrons 
emitted promptly from fission as 
a function of outgoing neutron 
energy

• It is not that pretty!
− noisy, uncertain, and 

biased/discrepant measurement 
data

• It is the role of the evaluator to 
suggest a pretty curve from the 
measurement data at hand
− Last evaluation was in 1989
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Cf-252 Spontaneous PFNS is a neutron data standard 
and a particularly important one

• >70% of PFNS measurements (both 
spontaneous and neutron-induced) 
are made relative to Cf-252
− Includes Pu-239 and Uranium-235

• Improvement in Cf-252 PFNS 
propagates to other isotopes PFNS

• These improvements then propagate 
to a broad range of applications 
through modelling and simulation

Cf-252 
Spontaneous 

PFNS

>70% of neutron-
induced PFNS 
Measurements

U-235 neutron-
induced PFNS

Pu239 neutron-
induced PFNS

Neutron Source
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AIACHNE seeks to design an experimental campaign to 
explore systematic biases in the differential data

Improves the Cf-252 spontaneous PFNS standard by improving the quality of 
measurement data → One measurement will have minimal bias while the other will 
help to characterize bias in a past dataset
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Traditional Bayesian model for generalized least squares 
evaluation

𝒚 = 	𝑫𝝈 + 𝜺

𝜺	~	𝑵 𝟎, (𝑫𝝈𝒖)𝟐

D Linear interpolation matrix

𝝈 PFNS Evaluation

y Observational Data

u Observational uncertainty

𝜹 Gaussian basis functions

𝜸 Basis function scaling 
factor
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Multiplicative basis functions used to account for bias in 
the model

𝒚 = 	𝑫𝝈𝒆𝜹𝜸 + 𝜺

𝜺	~	𝑵 𝟎, (𝑫𝝈𝒖)𝟐

D Linear interpolation matrix

𝝈 PFNS Evaluation

y Observational Data

u Observational uncertainty

𝜹 Gaussian basis functions

𝜸 Basis function scaling 
factor
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Multiplicative basis functions used to capture bias

𝜹 = 𝑩𝒔, 𝑩𝒎 , 𝑩𝒍

𝑩𝒙 = 𝒆
( 𝑬(𝜻𝒙 𝟐

𝒙 𝟐

𝒙 = 𝟎. 𝟑, 𝟎. 𝟏𝟓, 𝟎. 𝟎𝟓

𝒚 = 	𝑫𝝈𝒆𝜹𝜸 + 𝜺

𝜺	~	𝑵 𝟎, (𝑫𝝈𝒖)𝟐

𝜻𝒔 = 𝐥𝐨𝐠𝐬𝐩𝐚𝐜𝐞(𝒎𝒊𝒏/𝒎𝒂𝒙, 𝟏𝟎𝟎)

𝜻𝒎 = 𝐥𝐨𝐠𝐬𝐩𝐚𝐜𝐞(𝒎𝒊𝒏/𝒎𝒂𝒙, 𝟓𝟎)

𝜻𝒍 = 𝐥𝐨𝐠𝐬𝐩𝐚𝐜𝐞(𝒎𝒊𝒏/𝒎𝒂𝒙, 𝟏𝟎)

𝒆𝜹
𝜸

𝒍𝒐𝒈𝟏𝟎 𝑬𝒏𝒆𝒓𝒈𝒚 𝑴𝒆𝑽
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Sparse Bayesian inference – horseshoe prior on 𝜸 
induces sparsity in these bias terms

𝜹 = 𝑩𝒔, 𝑩𝒎 , 𝑩𝒍

𝑩𝒙 = 𝒆
( 𝑬(𝜻𝒙 𝟐

𝒙 𝟐

𝒙 = 𝟎. 𝟑, 𝟎. 𝟏𝟓, 𝟎. 𝟎𝟓

𝒚 = 	𝑫𝝈𝒆𝜹𝜸 + 𝜺

𝜺	~	𝑵 𝟎, (𝑫𝝈𝒖)𝟐

𝜸	~	𝑯. 𝑺. (𝝉)
𝝉 ∝ 𝐬𝐩𝐚𝐫𝐬𝐢𝐭𝐲	𝐥𝐞𝐯𝐞𝐥	

𝜻𝒔 = 𝐥𝐨𝐠𝐬𝐩𝐚𝐜𝐞(−𝟏. 𝟓, 𝟏. 𝟓, 𝟏𝟎𝟎)

𝜻𝒎 = 𝐥𝐨𝐠𝐬𝐩𝐚𝐜𝐞(−𝟏. 𝟓, 𝟏. 𝟓, 𝟓𝟎)

𝜻𝒍 = 𝐥𝐨𝐠𝐬𝐩𝐚𝐜𝐞(−𝟏. 𝟓, 𝟏. 𝟓, 𝟏𝟎)

𝒆𝜹
𝜸 𝒆𝜹
𝜸

Induce sparsity 
on 𝜸 
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There are many more features than datasets – and this 
is a filtered list!
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Two primary experimental features in a PFNS 
measurement are the hardware and methods associated 
with neutron and fission detection

Fission 
detection 
marks t0

Neutron 
detection 
marks t

time-of-flight
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In order to investigate, we let the experimental features 
guide how we group datasets, for example:
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Results for Neutron Detector Case A – we find expected 
bias due to Li-6 peak

Neutron Detector: Li-6
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High-E bias identified across several feature groups, 
less obvious but experimentally justified

Fission Detection Efficiency Correction 
Method: Calculated/Measured
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The strength of the bias term can be characterized by 
looking at the posterior samples

~30% of samples 
show this bias 

~70% of samples 
don’t show this 

bias 
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High-E bias identified in several feature groups, less 
obvious but experimentally justified

Fission Detection Efficiency Correction 
Method: Calculated/Stapre
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Fission Detection Efficiency Correction Method: 
Calculated/Measured

Fission Detection Efficiency Correction Method: 
Calculated/Stapre

~30% of 
samples

~10% of 
samples
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Posterior samples for the negative and positive bias 
terms are strongly correlated

~30% of 
samples

~10% of 
samples

Main Point:
Method cannot tell us which 
group is biased, only that a 

bias exists between the two

In total, a bias seen in ~40% of 
samples
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Potential bias causing groups agreed with expert 
judgement - but might not have thought of without ML
Correction Features Hardware Features Method Features

Shadow bar background Fission detector type Random coincidence

Alpha/gamma background Fission fragment efficiency Alpha/gamma background

Multiple scattering 
surrounding/sample

Fission detector gas Multiple scattering 
surrounding/sample

Attenuation surrounding/sample Fission fragment angular acceptance Fission fragment angular 
distribution

Fission/neutron detection 
efficiency

Neutron detector type Neutron detector 
response/efficiency

Neutron detector response Neutron detector size/angular 
coverage

Deadtime determination

Sample decay/impurities Neutron detector structural material Fission detector efficiency

Fission fragment angular 
distribution/absorption
Signal pulse pileup

Deadtime
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Limitations of the method

• Significantly more features than datasets
− Similar groupings of the datasets all show similar bias 
− It is important to interpret the identified biases with respect to the grouping of 

datasets
− Further analysis and expert reasoning to deduce which features may be the root 

cause

• Global sparsity parameter (𝝉) will allow more/less bias terms to remain
− Requires tuning to eliminate unnecessary bias terms while still allowing others
− Expert judgement comes into play again
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Conclusions and future applications

• Identified less-obvious 
discrepancies 
– Results agreed with (hidden) expert 

opinions on potential bias-causing 
features

• Narrows the set of features that 
could be the root cause of bias

• Allows for a more quantitative description of bias in measurement data
– Energy range of impact
– Used later for determination of bias correction factor

• Will result in a better evaluation for the Cf-252 PFNS neutron data 
standard and hopefully many other PFNS data!

Fission Detector: 
Scintillator (Plastic)


