<u>Ces</u>

Angular distribution measurements of neutron elastic scattering by natural carbon at GELINA with the ELISA setup

<u>G. Gkatis^{1,2}, M. Diakaki², G. Noguere¹, A. Oprea³, C. Paradela³, E. Pirovano⁴, A. Plompen¹</u>

¹CEA/DES/IRESNE/DER/SPRC/LEPh, Cadarache, F-13108 Saint Paul Lez Durance, France

²Department of Physics, National Technical University of Athens, GR-15780 Athens, Greece

³European Commission, Joint Research Centre, B-2440 Geel, Belgium

⁴Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig, Germany

Neutron Data Standards Meeting, IAEA, 8-13 oct. 2023

The GELINA facility

• Pulsed white neutron source

 $10 \text{ meV} \leq E_n \leq 20 \text{ MeV}$

- Neutron energy determination using the TOF (Time-Of-Flight) technique
- 10 flight paths

Flight path length 10 m - 400 m

• Various experimental setups

 $(n,tot) - (n,el) - (n,inl) - (n,\gamma) -$

(n,f) – (n,cp)

The ELISA setup

- ELISA (ELastic and Inelastic Scattering Array)
 - ²³⁵U fission chamber (neutron flux)
 - 32 liquid organic scintillators (scattered neutrons)
- 27.037 m distance from the GELINA neutron source (FP1_30m)
- Beam diameter at sample position: 49 mm
- Four sets of 8 detectors each mounted at specific angles
- Digitizer-based acquisition system + NIM electronics for the FC
- The goal is to produce **high-resolution cross section data** of neutron scattering in the fast neutron energy range

Fission chamber

- Parallel-plate ionization chamber
- Placed **upstream 1.37 m** from the sample
- **8 UF₄ deposits** (blue) on aluminum foils (black):
 - Al foils (84 mm diameter 20 μm thickness)
 - Vacuum evaporation
 - 70 mm diameter (> beam diameter)
 - 14 mm distance between them
- Aluminum electrodes (grey):
 - 25 µm thickness
 - 7 mm distance from the deposits
- **P10 gas** (10% methane 90% argon) at atmospheric pressure

Neutron flux

$$\Phi(\mathbf{E}) = \frac{Y_{FC}(\mathbf{E})}{\varepsilon_{FC} \cdot \sigma_{235U(n,f)} \cdot \rho_{235U} \cdot A_b}$$

- $Y_{FC}(E)$: fission chamber yield
- ε_{FC} : efficiency of the fission chamber
- $\sigma_{235\mathrm{U}(n,f)}$: neutron-induced fission cross section for ²³⁵U
- ρ_{235U} : areal density of the ²³⁵U targets
- *A_b*: cross sectional area of the neutron beam

Experimental details – ^{nat}C sample

- Date: **2020**
- Duration: 600 hours (360 hours of sample in + 240 hours of sample out measurement for the determination of the background contribution)
- Resolution: **5 ns**
- Pure ^{nat}C sample was used:
 - Diameter: 100 mm
 - Thickness: 2.0 mm
 - Mass: 35.7 g

Isotope	Atomic percent
¹² C	98.94
¹³ C	1.06

Results of the ^{nat}C(n,n)

Results of the ^{nat}C(n,n) – (EXFOR)

Results of the ^{nat}C(n,n) – (Angle-integrated)

- Scattering angular distributions and neutron elastic scattering cross section of natural carbon measured in the energy range from 1 to 8 MeV
- Total uncertainties of the cross sections vary from 3% to 10%
- Good agreement with experimental data available in the literature
- Interference issues with evaluated data around 3 MeV for backward angles
- JRC-Geel data will be uploaded to the **EXFOR** library soon!

Elastic – Inelastic separation

- Split the neutron t.o.f. spectrum in small intervals of 5 ns each (time resolution of the measurement)
- Knowing the neutron incident energy and the detection angle via kinematics calculation determine the energy of the neutrons scattered elastically E'_{el} and inelastically E'_{inl}
- Overlaps in the LO distribution of these 2 neutron energies proper threshold application

$$N_{el}(t.o.f.,\theta) = \frac{1 - F_{msc}(t.o.f.,\theta)}{\varepsilon(E'_{el})|_{L_{THR}} \cdot \Delta\Omega} \int_{L_{THR}} R_{fit}(L,E'_{el}) dL$$

- $\varepsilon(E'_{el})|_{LTH}$: is the detection efficiency as a function of the detected neutron energy E'_{el}
- $F_{msc}(t.o.f.,\theta)$: multiple scattering correction factor
- $R_{fit}(L, E'_{el})$: fitted detector response to the experimental LO spectrum in the interval above the L_{THR}

Determination of the neutron elastic scattering events

2.Background subtraction

Background contribution from **beam neutrons scattering on air or various materials** around the setup once or twice before reaching the detectors (Sample-in – **Sample-out subtraction**)

3.Elastic-Inelastic separation

Split the neutron t.o.f. spectrum in small intervals of **5 ns** each

- Knowing the neutron incident energy and the detection angle via kinematics calculation determine the energy of the neutrons scattered elastically E'_{el} and inelastically E'_{inl}
- Overlaps in the LO distribution of these 2 neutron energies proper threshold application

4. Multiple scattering correction

Monte Carlo simulations of the full detection setup using the MCNP6 code and the PTRAC file

