

Progress on the validation of the Thermal Neutron Constants

DE LA RECHERCHE À L'INDUSTRIE

NOGUERE Gilles (CEA, DES, IRESNE Cadarache)

TM on Neutron Standards, IAEA, 9-13 October 2023

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Validation process

	STD meeting 2017 CONRAD	NDS 2018 A.D. Carlson et al.	STD meeting 2022 I. Duran	Proposed for JEFF-4T3	Proposed for ENDF\B-VIII.1	Target values
σ_{tot}	 587.7(22)		590.2(17)	588.6	590.0	≈590(2)
σ_{f}	530.8(23)	533.0(22)	533.0(7)	531.2	533.0	≈533(<mark>2</mark>)
σ_{γ}	44.5(11)	44.9(9)	44.8(19)	45.3	44.8	≈45(1)
σ _n	12.3(7)	12.2(7)	12.4(5)	12.2	12.2	≈12.3(7)
υ _{tot}	2.490(7)	2.487(11)		2.497	2.484	2.484-2.490

Add partial reaction cross sections by taking into account full covariance matrix between TNC

To be optimized if needed using Mosteller's suite

May be too small uncertainty ... 🔶

 \Rightarrow Good agreement between all the results (within the limit of the uncertainties)

 \Rightarrow Confirm STD values reported in 2018

	STD meeting 2017 CONRAD	NDS 2018 A.D. Carlson et al.	STD meeting 2022 Duran	EPJA 2022 Matromarco et al.	Proposed for JEFF-4T3	Proposed for ENDF\B-VIII.1	Target values
σ_{tot}	698.2(36)		700.7(13)		699.7	699.5	≈699.8(20)
$\sigma_{\rm f}$	586.2(35)	587.3(14)	586.1(26)	586.2(33)	586.2	586.0	≈586.2(30)
σ_{γ}	97.9(12)	99.5(13)	100.3(27)		99.4	99.4	≈99.5(15)
σ _n	14.1(2)	14.09(22)	14.3(4)		14.1	14.1	≈14.1(2)
υ _{tot}	2.426(5)	2.425(11)			2.436	2.414	2.414-2.436
I ₃	245.7(30)		245.7(41)		246.7	251.9	≈245.7(40)
Try to find the origin of this slightly lower value in the Axton data Problem in the GMA data base ? Opposite direction ?							

Compensation with structures in the neutron multiplicity $\eta_{\text{p}}(\text{E})$?

 \Rightarrow Good agreement between all the TNC excepted fission cross section

 $\Rightarrow \sigma_{f}$ to be updated ...

Thermal Neutron Constant U235: fission cross section

Strategy to determine the average fission integral I₃ between 7.8 and 11 eV with CONRAD

Three-step calculations:

- 1. GLS fit of the fission data
- 2. Reliable covariance matrix calculated with the Marginalization procedure implemented in the CONRAD code
- 3. Average using the covariance matrix

Strategy to determine the average fission integral I_3 between 7.8 and 11 eV with CONRAD

Three-step calculations:

- 1. GLS fit of the fission data
- 2. Reliable covariance matrix calculated with the Marginalization procedure implemented in the CONRAD code
- 3. Average using the covariance matrix between all the data sets

Strategy to determine the average fission integral I₃ between 7.8 and 11 eV with CONRAD

Three-step calculations:

- 1. GLS fit of the fission data
- 2. Reliable covariance matrix calculated with the Marginalization procedure implemented in the CONRAD code
- 3. Average using the covariance matrix between all the data sets

I₃(U235) =245.7(30)

 \Rightarrow To be compared to **245.7(41)** (I. Durand, STD meeting, 2022)

	STD meeting 2017 CONRAD	NDS 2018 A.D. Carlson et al.	STD meeting 2022 I. Duran	Linear fit EXFOR data v _d =0.006415(50)*	Proposed for JEFF-4T3	Proposed for ENDF\B-VIII.1	Target values
σ_{tot}	1027.6(53)		1028.7(11)		1029	1029.5	≈1029(5)
$\sigma_{\rm f}$	749.5(34)	752.4(22)	751.0(19)		749.8	751.1	≈751(2)
σ_{γ}	270.1(29)	269.8(25)	269.7(24)		269.4	270.4	≈270(3)
σ _n	8(1)	7.8(10)	8.0(8)		9.8	8.1	≈8(1)
υ _{tot}	2.881(6)	2.878(13)		2.868(2)	2.867	2.8695	2.868-2.878
Try to find the origin of this higher value in the Axton data		Suggest a lo value for ບ	DW Du	ue to a thick tran used before the CO	smission from ORI present analysis w NRAD code	ELA never vith the	

 \Rightarrow Good agreement between all the TNC (within limit of uncertainties)

 \Rightarrow Slight decrease of σ_{f} is recommended for the next Neutron Data Standard

* P. Leconte, ALDEN experiment, prelim. value

Thermal Neutron Constant Pu241

	STD meeting 2017 CONRAD	NDS 2018 A.D. Carlson et al.	STD meeting 2022 I. Duran	Proposed for JEFF-4T3	Proposed for ENDF\B-VIII.1 (=JEFF-4T3)	Target values
σ_{tot}	1400(22)		1392.1(21)	1399.4	1399.4	≈1399(2)
$\sigma_{\rm f}$	1024(17)	1023.6(108)	1018.9(25)	1023.6	1023.6	≈1024(2)
σγ	364.3(75)	362.3(61)	362.3(61)	363.8	363.8	≈363(7)
σ _n	11.9(25)	11.9(26)	11.5(15)	11.9	11.9	≈11.9(25)
υ _{tot}	2.941(8)	2.940(13)		2.941	2.941	≈2.940(13)

 \Rightarrow Good agreement between all the methods

	STD meeting 2017 CONRAD (1)	NDS 2018 A.D. Carlson et al. (2)	Difference (1)-(2)
υ _{tot}	3.7660(70)	3.7637(158)	+0.0023

NDS 2018:

 $\overline{\nu}_{tot}$ for ²⁵²Cf from the GMAP analysis is 3.7637 (or 3.764) ± 0.42 %. This includes a 0.4 % unrecognized sys-

 \Rightarrow Reduce USU from **0.4%** to **0.25%**?

Add values of the delayed neutron multiplicity υ_{d} in the STD report ?

- Needed for deducing prompt neutron multiplicity from υ_{tot}
- Recommended υ_{d} values from CRP-AIEA
- New experimental υ_d values \Rightarrow ALDEN@ILL

The ALDEN program (P.Leconte, CEA Cadarache) started in 2018 at ILL (Grenoble, France) with the aim of measuring v_d for U233, U235, Pu239 and Pu241 with the LOENIE detector

Collaboration :ILL, IRESNE, CENBG, LPSC, LPC, IRFU, GANIL

	CRP IAEA [1]	ALDEN@ILL
U233	0.667(29)%	Measurement completed
U235	1.621(50)%	1.625(10)% [2]
Pu239	0.628(38)%	Measurement completed
Pu241	1.52(11)%	Measurement planned in 2024

[1] https://www-nds.iaea.org/beta-delayed-neutron/databases/delayedn_ty.html[2] P. Leconte et al., submitted to EPJA

Cea

Add ¹H(n, γ) value in the STD report ?

- Important for reactor applications (in PWR \Rightarrow 200 pcm on keff)
- Usefull for ab-initio calculations

Year	Value	Ref.
1988	≈317.7 mb	F.H. Mathiot, Few nucleons systems, mesons exchange currents and Δ excitations, J. Phys. G. Nucl. Phys. 14 S357 (1988)
2000	334.2 mb	G. Tupak, Precision calculations of np \rightarrow d γ cross section for big-bang nucleosynthesis, Nucl. Phys. A 678, 405 (2000)
2001	335.1 mb	S. Nakamura et al., Neutron reactions on deuteron, Phys. Rev. C 63, 034617 (2001)
2006	333.8 mb	S. Ando et al., Radiative neutron capture on a proton at big-bang nucleosynthesis energies, Phys. Rev. C 74, 025809 (2006)
2015	334.9 ^{+5.2} _{-5.4} mb	S.R. Beane et al., Ab-initio calculation of the np \rightarrow d γ radiative capture process, Phys. Rev. Lett. 115, 132001 (2015)
2022	319(3) mb	W. Du et al., Calculations of the np \rightarrow d γ reaction in chiral effective field theory, Phys. Rev. C 106, 054608 (2022)
2022	321.0(7) mb	B. Acharya et al., Gaussian process modeling for chiral effective field theory calculations of np \rightarrow d γ at low energies, Phys. Lett. B 827, 137011 (2022)
	332.7(69) mb	ENDF/B-VIII (G. Hale)

Table provided by David Bernard, CEA Cadarcahe

Target values proposed for TNC agree with STD values reported in NDS 2018, however fission cross sections of U235 and Pu239 need to be updated

- σ_f(U235) ≈ 586.2(30)
- $\sigma_{f}(Pu239) \approx 751(2)$

Prepare a clean TNC data base (AGS format) for gmapy data assimilation

- Differences between Axton data and EXFOR values (see Naohiko Otuka et al., proceedings ND2016)
- Correction JRC-Geel data following comments of Peter Schillebeeckx
- Verify normalization of TNC data (boron cross section, ...)
- Remove redundant TNC data from GMA database
- Check consistency of the GMA data at thermal energy
- \Rightarrow Add TOF data used by Ignacio Duran in TNC data base (for consistency, easy to add new TOF data, ...)?
- \Rightarrow Provide new CONRAD results for verification

Add thermal v_d and ¹H(n, γ) in the list of recommended values ?