The SANDA and APRENDE European nuclear data projects

Daniel Cano Ott on behalf of the SANDA and APRENDE partners

daniel.cano@ciemat.es

Unidad de Innovación Nuclear Departamento de Fisión Nuclear CIEMAT Avda. Complutense 40, 28040 Madrid – España

European Research Counc

Centro de Investigaciones

v Tecnológicas

Almost every nuclear application that requires minimal accuracy must be supported by well-validated experimental data. Nuclear models are not able to predict (by themselves) accurately the microscopic properties of nuclei.

- Nuclear reaction data: cross sections (probability of reaction as a function of energy), energy distributions, multiplicity and angular distributions of reaction products ...
- Decay and nuclear structure data: modes of disintegration, halflives, probabilities of emission of particles (multiplicities, energies, angular correlations), information on the nuclear structure (energy, spin and parity) ...
- Integral data. Macroscopic properties of nuclear systems, some of them measured or determined with high accuracy. They are typically used for the test and validation of microscopic data.

All these quantities are called nuclear data.

Differential data

- Nuclear theory. ٠
- Nuclear technologies: reactor operation and design, nuclear fuel cycle, ٠ criticality...
- Fusion reactors: neutronics, diagnostics, activation... ٠
- Nuclear astrophysics. •
- Medical applications: therapy, imaging, dosimetry... ٠
- Detector design and calibrations. ٠
- Dosimetry. ٠
- Nuclear forensics. •
- Homeland security. •
- Climate studies. •
- Planetary science. ٠
- Space applications. ٠
- Oil searches. ٠

. . .

Non-destructive analysis techniques. ٠

> Energéticas Medioamhientale v Tecnológicas

During the Manhattan project, when reactor engineers were stumped by the lack of nuclear data, they would put their problems to **Fermi**.

Fermi would protest that he could not help them, because the number they wanted had not been measured and could not be predicted. The engineers, ignoring Fermi's protest, began reciting slowly a series of numbers while watching his eyes closely.

The correct number would produce an involuntary twinkle in Fermi's eyes.

ANL – <u>https://ahf.nuclearmuseum.org/voices/oral-histories/fermi-love-part-3/</u>

AUGUST 1, 1947

A Thermal Neutron Velocity Selector and Its Application to the Measurement of the Cross Section of Boron E. FERMI I. MARSHALL AND I. MARSHALL AND I. MARSHALL

E. FERMI, J. MARSHALL, AND L. MARSHALL Argonne National Laboratory,* University of Chicago, Chicago, ** Illinois (Received April 25, 1947)

Aluminium

Steel 🔅

Cadmium

Multiple sandwich

of 0-004-0-008 in. cadmium and b in, aluminium foils

(Reproduced by the courtesy of E. Fermi, J. Marshall and L. Marshall from the Physical Review)

(Reproduced by the courtesy of T. Brill and H. Lichtenberger)

(1941) FERMI's notebook with the design of Chicago PILE-1 (1942)

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

(1945) Patent on Fermi-Szilard reactor design.

CNR*24, IAEA 8th – 12th of July

80 years later...

Unfortunately, we don't have Fermi!

- 1. Better Monte Carlo simulation tools, deterministic codes, and computers.
- 2. Powerful and well characterised neutron sources, advanced detectors, and data acquisition systems for producing high quality data.
- 3. Evaluators.
- 4. Complex validation methodologies.

iemo

Energéticas, Medioambientale y Tecnológicas

CIENCIA, INNOVACIÓN

The MYRRHA Accelerator Driven System

The nuclear data cycle

Nuclear data projects in Europe

HINDAS (16) KU-Leuven 3.3 M€ 2000 - 2003 High and Intermediate energy Nuclear Data for Accelerator-driven Systems	IP-EUROTRANS (~20) KIT ~1 M€ NUDATRA 2005 - 2010 EUROpean research programme for the TRANSmutation of high-level nuclear waste in an accelerator driven systems		CHANDA (36) CIEMAT ~5.4 M€ 2013 - 2018 solving CHAllenges in Nuclear DAta		APRENDE (36+4) CIEMAT ~4 M€ 2024 – 2028 Addressing PRiorities of Evaulated Nuclear Data in Europe		
National fund ARIEL, OFFE <u>n TOF-ADS (18)</u> CERN 2.4 M€	ing + Transnational ac ERR, EURO-LABS) + CANDIDE (14) UU ~1 M€	CCESS Pro Education	grams (ER 1 & training 5 (21) ~3 M€	INDA, EU (ARIEL, E SANDA CIEMAT	FRAT, NEN2+) (36) ~5.4 M€		
2000 – 2004 Data for Accelerator Driven	2007 - 2008 Coordination Action on Nuclear Data for	2010 - 20 Coordina Accurate Nuclear)13 ition	2019 - 20 Supplying Accurate Nuclear	24		
nucleard data	Industrial Development in Europe	Energy Sustaina	bility	non-energ	gy bns		
GOBIERNO DE ESPAÑA VUNIVERSIDADES CIENCIA, INNOVACIÓN VUNIVERSIDADES CENTRO de Investigaciones Energiencias, Medicambientaiss VUNIVERSIDADES CENTRO de Investigaciones Energiencias, Medicambientaiss VUNIVERSIDADES							

SANDA and APRENDE

Topics covered:

- Detector development and infrastructure upgrades
- New measurements
- Sample preparation (stable and radioactive)
- Evaluation of nuclear data
- Validation & integral experiments
- Transnational access
- Education & Training

APRENDE / dedicated ARIEL project during SANDA

APRENDE has the ambition to improve nuclear data for the European priorities:

- All aspects of spent nuclear fuel (SNF),
- **Reactor operational characteristics** such as reactivity versus burnup, transients, and margins,
- Advanced reactor and fuel cycle development including small modular reactors (SMR) and GenIV systems based on Pb, Na coolants, molten salts, or an accelerator like MYRRHA,
- **Criticality safety** and shielding for safety assessments and safety assessment methodologies,
- Non-Energy applications, radiation protection.

SANDA and APRENDE

Topics covered:

- Detector development and infrastructure upgrades
- New measurements ۰
- Sample preparation (stable and radioactive) ۲
- Evaluation of nuclear data •
- Validation & integral experiments •
- Transnational access ٠
- Education & Training •

APRENDE / dedicated ARIEL project during SANDA

- All aspects of s
- Reactor operational char margins,
- Emphasis on the training of new evaluators modular reactors (SMR) Advanced reactor and fuel cycle development ٠ and GenIV systems based on Pb, Na coolants, mon-MYRRHA,
- Criticality safety and shielding for safety assessments and safety asses ٠ methodologies,
- Non-Energy applications, radiation protection.

erc

A few selected facilities

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

CNR*24, IAEA 8th – 12th of July

List of the facilities participating in SANDA and APRENDE:

- CERN (CH, international laboratory): n_TOF
- JRC Geel (BE, European Commission): GELINA (neutron TOF) and MONNET (Tandem for monochromatic neutrones)
- GANIL / SPIRAL2 (FR): Neutrons For Science (NFS) & ions
- HZDR (GE): nELBE
- CNRS (FR): AIFIRA (ion beams), ALTO (LICORNE) and GENESIS (14 MeV)
- PTB (GE): reference neutron fields
- JYU (FI): ions
- IFIN-HH (RO): ions & neutrons
- Centro Nacional de Aceleradores (CNA): neutrons & ions
- CVREZ (CZ): LR-0 experimental reactor.

n_TOF @ CERN

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

CNR*24, IAEA 8th – 12th of July

The n_TOF collaboration

O. Aberle¹ V. Alcayne² S. Amaducci^{3,4} J. Andrzejewski⁵ L. Audouin⁶ V. Babiano-Suarez⁷ M. Bacak^{1,8,9} M. Barbagallo^{1,10} S. Bennett¹¹ E. Berthoumieux⁹ J. Billowes¹¹ D. Bosnar¹² A. Brown¹³ M. Busso^{10,14,15} M. Caamaño¹⁶ L. Caballero-Ontanaya⁷ F. Calviño¹⁷ M. Calviani¹ D. Cano-Ott² A. Casanovas¹⁷ F. Cerutti¹ E. Chiaveri^{1,11} N. Colonna¹⁰ G. Cortés¹⁷ M. A. Cortés-Giraldo¹⁸ L. Cosentino³ S. Cristallo^{14,19} L. A. Damone^{10,20} P. J. Davies¹¹

- C. Domingo-Pardo7 R. Dressler²³ Q. Ducasse²⁴ E. Dupont⁹ I. Durán¹⁶ Z. Eleme²⁵ B. Fernández-Domínguez¹⁶ A. Ferrari¹ P. Finocchiaro³ V. Furman²⁶ K. Göbel²⁷ R. Garg²² A. Gawlik⁵ S. Gilardoni¹ I. F. Gonçalves²⁸ E. González-Romero² C. Guerrero¹⁸ F. Gunsing⁹ H. Harada²⁹ S. Heinitz²³ J. Heyse³⁰ D. G. Jenkins¹³ A. Junghans³¹ F. Käppeler³² Y. Kadi¹
- A. Kimura²⁹
- I. Knapová³³
- M. Kokkoris²¹
 - Y. Kopatch²⁶ M. Krtička³³
 - D. Kurtulgil²⁷

- I. Ladarescu⁷ C. Lederer-Woods²² H. Leeb⁸ J. Lerendequi-Marco¹⁸ S. J. Lonsdale²² D. Macina¹ A. Manna^{34,35} T. Martínez² A. Masi¹ C. Massimi^{34,35} P. Mastinu³⁶ M. Mastromarco¹ E. A. Maugeri²³ A. Mazzone^{10,37} E. Mendoza² A. Mengoni³⁸ V. Michalopoulou^{21,1} P. M. Milazzo³⁹ F. Mingrone¹ J. Moreno-Soto9 A. Musumarra^{3,40} A. Negret⁴¹ R. Nolte²⁴ F. Ogállar42 A. Oprea⁴¹ N. Patronis²⁵ A. Pavlik⁴³
 - J. Perkowski⁵
 - L. Persanti^{10,14,19}
 - C. Petrone⁴¹
 - E. Pirovano²⁴

A. Ventura³⁴ D. Vescovi^{10,14} V. Vlachoudis¹ R. Vlastou²¹ A. Wallner⁴⁷ P. J. Woods²² T. Wright¹¹ P. Žugec¹²

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

M. Diakaki^{21,1}

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

The n_TOF facility

N. Patronis et al. EPJ Techniques and Instrumentation 10, 13 (2023)

CIÓN Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

CNR*24, IAEA 8th – 12th of July

Very high fluence/pulse, low repetition rate.

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES Ciemat

Centro de Investigacione

Energéticas, Medioambientales y Tecnológicas **** **** erc European Research Counce

JRC – Geel: GELINA and MONNET

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

erc

The GELINA TOF facility

European Research Counci

GOBIERNO

MINISTERIO

Y UNIVERSIDADES

DE CIENCIA, INNOVACIÓN

Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

GELINA neutron fluence

MONo eNErgetic neutrons by Tandem (MONNET)

3.5 MV NEC Tandem

DE CIENCIA, INNOVACIÓN

UNIVERSIDADES

Protons, deuterons and α -particles DC (p,d < 50 pA) Pulse beam (1 – 2 ns) E_n: 200 keV – 7 MeV

Ciemat

Centro de Investigacione

Energéticas, Medioambientales

y Tecnológicas

European Research Coun

CNR*24, IAEA 8th – 12th of July

Neutrons for Science – NFS @ SPIRAL-2

Driven by the high intensity SPIRAL-2 deuteron accelerator.

Energéticas, Medioambientales y Tecnológicas

European Research Cound

Neutrons for Science – NFS @ SPIRAL-2

Fig 2: Continuous and quasi-mono-energetic beams of neutrons produced at NFS. Neutron yields at 0° produced by a) 40 MeV deuteron beam on a Be (8 mm) convertor (upper panel). b) 33 MeV proton beam on thin lithium and beryllium convertors.

CNR*24, IAEA 8th – 12th of July

nELBE – The neutron time-of-flight facility at ELBE

ELBE - Center for high-power radiation sources (Electron Linac for beams with high **B**rilliance and low **E**mittance)

erc

European Research Counc

- electron beam energy: 8 40 MeV
- max. bunch charge: 200 pC

DE CIENCIA, INNOVACIÓN

Y UNIVERSIDADES

- repetition rate (cw): $13/2^{n}$ MHz (n = 0 7)
- max. mean beam current: 1 mA
- micro pulse length: ca. 5 ps

iemat

Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

http://www.hzdr.de/elbe

nELBE neutron spectrum

Photoneutron spectrum (measured with the PTB ²³⁵U fission chamber H19) TOF spectrum: Photofission from bremsstrahlung and neutron induced fission Photoneutron spectrum similar to the fission neutron spectrum Neutron time of flight range 100 ns – 2,5 μ s Neutron energy range from 100 keV – 7 MeV Neutron spectral rate on target ca. 2*10⁴ n/(cm² s MeV)

iemot

Energéticas, Medioambientale y Tecnológicas

E CIENCIA INNOVACIÓN

R. Beyer et al., NIM A723 (2013) 151

The LICORNE facility

LICORNE: The unique inverse kinematics neutron source of the ALTO facility

Measurements of (A,N) Yields and spectra (MANY)

JERSIDAO Two Spanish facilities with electrostatic accelerators: UPC Científicas y Técnicas Singulares Ciemat Centro de Investigaciones INSTITUT DE FÍSIC Energéticas, Medioambientales y Tecnológicas HispNoS CMAM Centro Nacional de Aceleradores UNIVERSIDAD

Ciemat Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

CNR*24, IAEA 8th – 12th of July

Instituto de Estructura

de la Materia

COMPLUTENSE

MADRID

Time for one ad

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

CNR*24, IAEA 8th – 12th of July

Demo Oriented NEutron Source (DONES)

One of the most powerful accelerators in the world:

Medium Energy

Beam Transport

5 MeV

- 40 MeV deuterons.
- Broad beam profile: 20 cm x 5 cm.
- 125 mA

Injector + ECR

100 keV

- x2 for IFMIF

Liquid lithium neutron

HE beam transport 40 MeV

~90 m

SC Linac 40 MeV

RFQ 5 MeV

ESFRI facility proposed in Granada

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

The DONES facility

The TOF-DONES layout

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

CNR*24, IAEA 8th - 12th of July

Neutron flux of TOF DONES

erc

	L	En	(n,tot)	(n,γ)	(n,f)	(n,xn)	(n,n'γ)	(n,el)	F.Y.	Act.
n_TOF	185 m 20 m 60 m	meV – GeV	in progress	Х	х	under study	under study	-	x	х
GELINA	3 m – 400 m	meV – MeV	Х	Х	Х	Х	Х	х	-	-
NFS	40 m	1 – 40 MeV	Х	Х	Х	Х	Х	Х	х	-
nELBE	5 m	0.1 – 10 MeV	Х	-	Х	Х	Х	Х	-	-

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

OBIERNO

UNIVERSIDADES

Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

Comparison of the facilities: neutrones / pulse

LR-0 reactor at CVREZ

The LR-0 is a zero-power light water pool type reactor operated by the Research Centre Řež (Czech Republic). Continuous nominal power is 1 kW with a thermal neutron flux of about 10⁹ cm⁻²·s⁻¹ and a fast neutron flux (above 1 MeV) of 2×10⁸ cm⁻²·s⁻¹.

IGISOL with PI-ICR technique and MR-TOF device

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Measurements

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

CNR*24, IAEA $8^{th} - 12^{th}$ of July

94,95,96 Mo(n, γ) and (n,tot) cross section measurements

Multi-facility experiment at GELINA and two n_TOF experimental areas.

- Transmission measurement with enriched pellets at 10 m station of GELINA
- Transmission measurements with natural samples at 50 m station of GELINA
- Capture measurements at n_TOF EAR1 (185 m) and EAR2 (20 m)

DE CIENCIA, INNOVACIÓN

UNIVERSIDADES

Centro de Investigaciones

Energéticas, Medioambientales

y Tecnológicas

²⁴¹Am(n,f) at n_TOF EAR2

~10 cm

 Cathode Measurement done at EAR2 Sample (3-8 cm)**Drift volume** Specific activity of ²⁴¹Am: 127 MBq/mg Micromesh (~1 kV/cm) e 5-10 mm (5µm copper) Micromegas detectors (MICRO- Mesh <u></u> 1 50 μm Gaseous Structure) detectors – Anode **Amplification region** Kapton ²⁴¹Am (0.77 mg) + ²³⁵U + ²³⁸U (~50 kV/cm) Neutron 10 beam Drift direction n TOF data cable TP2017-004-07 ENDF/B-VIII.0 TP2017-005-15 TP2017-003-09 10 Cross Section (barns) JEFF-3.3 TP2017-003-08 241 Am TP2017-003-07 235 U TP2017-003-05 238 U TP2017-003-04 TP2017-003-03 TP2017-005-12 TP2017-004-02 10 10^{-2} 10⁻² **10**⁻¹ 10² 10⁵ 10⁶ 10^{3} 10⁴ 10 Neutron Energy (eV) PhD thesis of Zinovia Eleme (UIO) erc Ciemat CNR*24, IAEA 8th - 12th of July

European Research Cound

40

GOBIERNO DE ESPAÑA

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

No spoiler:

See the talks by A. Sánchez (²³⁹Pu) and Maëlle Kerveno (inelastic xs measurements)

Fission yield measurements at ILL - Grenoble

European Research Cou

Measurements with an ionisation chamber (mass yields)

ionbeam

E CIENCIA, INNOVACIÓN

Ciemat

Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

Or with **HPGe detectors** (isotopic yields, isomeric ratios)

Fission yield measurements at ILL - Grenoble

Absolute isotopic yields for $^{241}Pu(n_{th},f)$

New measurement and analysis protocol

Evaluation of the systematics of the setup (correlations E-q, target burnup...) and computation of the experimental variance-covariance matrices

<u>Mass A = 139:</u> All the uncertainties propagated (left) Case where the uncertainty of the normalization the normalization intensity is equal to zero

 \rightarrow uncertainties mainly coming from nuclear decay data

> S. Julien-Laferrière et al., Phy. Rev. C **102**, 034602 (2020)

CNR*24, IAEA 8th - 12th of July

IGISOL with PI-ICR technique and MR-TOF device

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

GOBIERNO DE ESPAÑA

Ciemat

Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

Activation cross sections for proton therapy

Isotope	Half-life	Q_{β^+} (MeV)	Reaction channel	Threshold (MeV)
			$^{12}C(p,x)^{11}C$	17.9
¹¹ C	20.36 min	0.960	$^{14}N(p,x)^{11}C$	3.13
			${}^{16}O(p,x){}^{11}C$	23.6
			${}^{12}C(p,x){}^{13}N$	-
^{13}N	9.97 min	1.198	$^{14}N(p,x)^{13}N$	8.93
			${}^{16}O(p,x){}^{13}N$	5.55
150	100 c	1 725	$^{14}N(p,x)^{15}O$	-
0	122.8	1.755	${}^{16}\mathrm{O(p,x)}{}^{15}\mathrm{O}$	14.3
¹² N	11 ms	16.316	${}^{12}C(p,x){}^{12}N$	19.6
^{38m} K	0.925	5.022	$^{40}Ca(p,x)^{38m}K$	14.0
²⁹ P	4.14 s	3.921	${}^{31}P(p,x){}^{29}P$	15.6

PhD Thesis of Teresa Rodríguez-González. Courtesy of C. Guerrero

T. Rodriguez et al., Rad. Phys. Chem. 190 (2022) T. Rodriguez et al., Nucl. Data Sheets 187 (2023)

1. Single irradiation

2. Positioning

3. PET measurement

Ciemat

Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

OBIERNO

MINISTERIO

UNIVERSIDADES

DE CIENCIA, INNOVACIÓN

in a PE matrix serving as converter

erc

European Research Counci

Irradiaton facilities

Westdeutsches Protonentherapiezentrum Essen

7

eidelberger Ionenstrahl-Therapiezentrum

CIÓN Centro de Investigaciones Energéticas, Medioambienales y Tecnológicas

CNR*24, IAEA 8th - 12th of July

Multi facility experimental campaign

A few results

¹²C(p,x)¹¹C

⁴⁰Ca(p,x)^{38m}K

(p,x)	(n,ch.p.)	(n,f)	(n,inel)	(n,γ)	decay b-n	decay T1/2	Fission yields	SACS
¹² C(p,γ) ¹³ N	^{nat} C(n,lchp)	²³⁵ U(n,f)	¹⁹⁷ Au(n,2n)	⁹² Mo(n,γ)	Ni-75	¹⁰⁶ Ru	²³⁵ U	¹¹⁷ Sn
¹² C(p,x)11C	¹⁴ N(n,p) ¹⁴ C	²³⁰ Th(n,f)	¹⁹⁷ Au(n,3n)	⁹⁴ Mo(n,γ)	Ni-76	¹⁵³ Sm	²³⁷ Pa	⁶⁰ Ni
¹⁴ N(p,x) ¹¹ C	¹⁶ Ο(n,α)	²³⁹ Pu(n,f)	²⁰⁹ Bi(n,3n)	⁹⁵ Mo(n,γ)	Cu-76	¹⁶⁶ Ho		
¹⁴ N(p,x) ¹³ N	^{nat} C(n,ch.p.)	²³⁹ Pu(n,f)	²⁰⁹ Bi(n,4n)	²³⁹ Pu(n,γ)	Cu-77	¹⁸⁶ Re		
¹⁴ N(p α) ¹¹ C		²⁴¹ Am(n,f)	⁵⁸ Ni(n,2n)/ ²⁷ Al(n,α)		Cu-78	²¹² Pb		
¹⁴ N(p,γ) ¹⁵ O			¹⁹ F(n,2n)/ ²⁷ Al(n,α)		Cu-79	²²⁵ Ac		
¹⁶ O(p,α) ¹³ N			²³⁹ Pu(n,n'γ)		Zn-79	²²³ Ra		
¹⁶ O(p,3p3n) ¹¹ C			²³³ U(n,n'γ)		Zn-80			
¹⁶ O(p,x) ¹¹ C			¹⁴ N(n,n'γ)		Zn-81			
¹⁶ O(p,x) ¹³ N			³⁵ Cl(n,n'γ)		Ga-82			
¹⁶ O(p,x) ¹⁵ O			³⁷ Cl(n,n'γ)		Ga-83]		

12	5	6	12	5	12	8	3	3
			66					

(α, n)	(ch.p.,xn)	(n,ch.p.)	(n,el)	(n,f)	(n,inel)	(n,γ)	decay	PFNS	Fission yields
⁹ Be(α,n)	⁷ Li(d,2n) ⁷ Be	³⁵ Cl(n,p)	⁵⁴ Fe(n,n)	²⁴² Pu(n,f)	⁵⁶ Fe(n,n')	⁵⁹ Co(n,γ)	⁹¹ Br	²³⁹ Pu	²³⁵ U
$^{10}B(\alpha,n)^{13}N$	⁶ Li(d,n) ⁷ Be	³⁵ Cl(n,α)	⁶⁵ Cu(n,n)	²⁴¹ Pu(n,f)	⁵⁶ Fe(n,n)	⁶⁵ Cu(n,γ)	⁹¹ Kr	²⁵² Cf	²³³ U
²⁷ Al(α,n)		⁵⁴ Fe(n,α)	⁶³ Cu(n,n)	²⁴⁰ pu(n,f)	⁵⁴ Fe(n,2n)	⁶³ Cu(n,γ)	⁹² Rb		²³⁹ Pu
			²⁰⁸ Pb(n,n)	²³⁹ Pu(n,f)	⁵⁴ Fe(n,n')	¹⁰⁹ Ag(n,γ)	⁹⁶ Y		²⁴³ Cm
			²⁰⁶ Pb(n,n)	²⁴³ Am(n,f)	⁶⁵ Cu(n,n')	¹⁶⁷ Er(n,γ)	⁹⁹ Nb		²⁵² Cf
					⁶³ Cu(n,n')	¹⁶⁶ Er(n,γ)			
					⁹² Zr(n,n'γ)	¹⁸⁶ W(n,γ)			
					⁹⁰ Zr(n,n'γ)	²⁰⁹ Bi(n,γ)			
					²⁰⁸ Pb(n,n')	²³² Th(n,γ)			
					²⁰⁶ Pb(n,n')	²³⁸ U(n,γ)			
					²³⁸ U(n,2nγ)	²⁴¹ Pu(n,γ)			
					²³⁸ U(n,3nγ)				
					· · · · · · ·	- 			

3	2	3	5	5	12	11	5	2	5
53									

Production of samples

Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas

European target laboratories

Stable Radioactive

Boundary conditions:

- For own experiments
- With a collaboration agreement

lsotope	Experiment @	Target lab
¹⁷⁹ Ta	TRIGA Mainz	PSI
⁷⁹ Se	n_TOF	PSI
⁹⁴ Nb	n_TOF	PSI
⁹⁴ Nb	n_TOF	PSI
¹⁰ Be	NL Argonne	PSI
^{50,53} Cr	n_TOF	PSI
^{50,53} Cr	n_TOF	PSI
²³⁹ Pu	n_TOF	JRC–Geel
²³⁹ Pu (various)	GELINA	JRC–Geel
²³⁵ U (various)	NFS	JRC–Geel
²³⁸ U (various)	NFS	JRC–Geel

INNOVACIÓN ADES Energy

molecular plating of ${}^{10}\text{Be}(OH)_2$ solution on thin Pt foils at PSI

Backing 1 μ m, 1.5 μ m and 2 μ m thick Pt foil, ø 7 mm

Deposit

160 µg/cm2 ¹⁰Be (500 µg/cm2 Be)

¹⁰Be target on a 1µm platinum foil that was used in the experiment

Collaboration with University of York, UK and Argonne National Laboratory, Illinois, USA.

A 304 mg of high purity ⁹³Nb wires were shaped in a spiral pattern **at PSI** and afterwards activated at the high-flux nuclear ILL-Grenoble reactor for 51 days.

The target was then analyzed at PSI by a customized HPGe gamma-ray spectroscopy set-up.

⁹⁴Nb activity: 10.1 MBq

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Targets produced in SANDA

²³⁸UF₄ deposits by physical vapour deposition at JRC Geel

Backing

34 μ g/cm² polyimide foil on 1 mm thick Al ring Ø_{out} 90 mm Ø_{in} 70 mm

Deposit

²³⁸U diameter: 20 mm
²³⁸U areal density: 377 µg/cm²
²³⁸U mass:1.84 mg

Al layer 87nm. Physical vapour deposition CEA

iemo

Energéticas, Medioambiental y Tecnológicas <u>Material</u>: 99.998 at% ²³⁸U <u>Deposited layer</u>: UF₄ <u>Mass</u> ²³⁸U: 4.43 mg <u>Areal density</u> ²³⁸U: 628 µg/cm² <u>Deposit diameter</u>: 29.96 mm Physical vapour deposition JRC-Geel

Targets produced in SANDA

Deposit

²³⁹Pu diameter: 20 mm²³⁹Pu areal density: 320-330 µg/cm²

Backing

 $20 \ \mu m \ Al$ foil

²³⁹Pu (99.902% pure) targets during the mounting process at JRC – Geel.

Material provided by SCK·CEN

2 g of ²³⁹Pu powder canned in a container, Ø 50mm, thickness 0.5 mm at JRC-Geel.

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

The PROMAS Project (SANDA and APRENDE)

PReparative Offline MAss Separation

Project was submitted in May 2024. Project starts: 01.12.2024 Project ends: 30.11.2025 Project Budget: 2.250 kCHF

OBIERNO

MINISTERIO

Y UNIVERSIDADES

DE CIENCIA, INNOVACIÓN

Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

European Research Counc

Development of detectors

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Improved γ-ray detectors for capture measurements

 (n,γ) cross section measurements are performed using γ -ray detectors. At n_TOF EAR1 (185 m flight path):

- 40 crystal BaF₂ Total Absorption Calorimeter
- Various types of C₆D₆ liquid scintillators (AI and carbon fibre housing)

 $\epsilon \simeq k \cdot \sum E_{\gamma}$

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

ÓN Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

2014 -> construction of the EAR2 20 m flight path.

The counting rates in EAR2 are ~300 times larger than counting rates in EAR1 (10^7 cps). The γ -ray detectors designed for EAR1 did not work properly in EAR2.

The segmented TED detector (sTED)

Simple idea: use smaller detectors & improved photomultipliers and VD

V. Alcayne et al., A Segmented Total Energy Detector (sTED) optimized for (n, γ) cross-section measurements at n_TOF EAR2, Radiat. Phys. Chem. 217, 111525 (2024).

E. Mendoza et al., Neutron capture measurements with high efficiency detectors and the Pulse Height Weighting Technique, Nucl. Instr. Meth. 1047, 167894 (2023).

Estimation of the neutron sensitivities $((\epsilon_n/\epsilon_\gamma) \cdot (\Gamma_n/\Gamma_\gamma))$ of one sTED module for different
nuclei and resonances. For details see the text.

Isotope	E_n (eV)	$\frac{\Gamma_n}{\Gamma_{\gamma}}$	$rac{arepsilon_n}{arepsilon_{\gamma}}$	$(\varepsilon_n/\varepsilon_\gamma)\cdot(\Gamma_n/\Gamma_\gamma)$
¹⁹⁷ Au	4.91	$1.2 \cdot 10^{-1}$	$1.6 \cdot 10^{-3}$	$2.0 \cdot 10^{-4}$
²⁴⁰ Pu	5.01	8.4.10-2	$1.6 \cdot 10^{-3}$	$1.4 \cdot 10^{-4}$
²⁴⁴ Cm	7.66	4.9	$1.6 \cdot 10^{-3}$	8.0 ·10 ⁻³
²⁴⁴ Cm	86.1	$6.6 \cdot 10^{-1}$	$5.5 \cdot 10^{-4}$	$3.6 \cdot 10^{-4}$
²⁰⁷ Bi	12100	$2.2 \cdot 10^3$	$1.1 \cdot 10^{-4}$	$2.4 \cdot 10^{-1}$
²⁰⁷ Pb	41 100	$3.7 \cdot 10^2$	$2.3 \cdot 10^{-4}$	$8.4 \cdot 10^{-2}$

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES Centro de Investigaciones Energédicas, Medicambientales y Tecnológicas

The sTED are now the standard capture setup for n_TOF EAR2. They (9 sTEDs) have been used to measure: ${}^{94,95,96}Mo(n,\gamma)$, ${}^{79}Se(n,\gamma)$, ${}^{28,29,30}Si(n,\gamma)$, ${}^{64}Ni(n,\gamma)$, ${}^{160}Gd(n,\gamma)$, ${}^{209}Bi(n,\gamma)$, ${}^{146}Nd(n,\gamma)$, ${}^{97,98}Mo(n,\gamma)$. **18 more on the way!**

Fission yield detector (FALSTAFF)

²³⁵U target:

- JRC-Geel (99.94% ²³⁵U)
- 195 µg/cm²
- F 28 mm
- 1.2 mg
- Ta backing
- Al support

Courtesy by D. Doré (CEA)

CNR*24, IAEA 8th – 12th of July

erc

²³⁵U fission yields measured at NFS

Measurements of β -delayed neutron emission probabilities (Pxn values) are typically measured with high efficiency detectors (³He) embedded in a moderator (polyethylene) matrix. (%

- Maximise the efficiency
- Flat response (ε vs E_n)

A. Tarifeño-Saldivia et. al. J. Instrumad 2017)

BELEN 20

CIENCIA, INNOVACIÓN

BELEN 48

CNR*24, IAEA 8th - 12th of July

BELEN with spectrometric capabilities

Beta-dELayEd Neutron detector (BELEN)

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Nucleus	Q _{bn} , MeV	<e>, MeV</e>		Nucleus	Ratio <e></e>
Cf-252		2.13	Simulation of virtual decays and	Cf-252	1.019
Br-88	1.922	0.2515	analysis of the data	Br-88	1.033
Rb-94	3.452	0.4424		Rb-94	1.032
Rb-95	4.883	0.5295		Rb-95	1.091
I-137	2.001	0.6298		I-137	1.023
0.09 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.01 0.02	252Cf Manha Initial Unfold Manha 252Cf 10100	Ei M 252Cf unfolding art evaluation guess (Maxwell spectrum T=2.0 led spectrum 6 7 8 Ener	ntries 40 ean 2.108 dd Dev 1.655 o MeV) 9 10 rgg/MeV	95Rb Unto 95Rb Unto 1115 2 2.5 3 1371 Unto 1371 Unto 115 2 2.5 3	folding results 5-endf71 al guess BetaIntensity_95Rb blded spectrum

European Research Council

Ciemat

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

GOBIERNO

DE ESPAÑA

MINISTERIO DE CIENCIA, INNOVACIÓN

Y UNIVERSIDADES
Evaluation

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

CNR*24, IAEA $8^{th} - 12^{th}$ of July

Improvements of TALYS & EMPIRE

- New OMP developed by P. Romain.
- New photon strength functions based on QRPA (S. Goriely, S. Hilaire, S. Peru)
- Evaluation of the high energy part of ^{235,238}U and ²³⁹Pu. ٠

Cez

Courtesy of S. Hilaire and G. Noguere

- Actinides like ^{235,238}U, ²³⁹Pu, ²³⁹Np and ²⁴¹Am (CEA/DEN, CEA/DAM/DIF, CNRS)
- Fission fragments Sm, Nd, Cs, Mo, Ru, Eu, Gd, Rh: CEA/DEN, PSI)
- New Cr evaluations (U Uppsala)
- Light elements ¹⁶O, ⁹Be (TU Wien)

iemol

v Tecnológica:

Evaluations will be part of **JEFF-4**

E CIENCIA, INNOVACIÓN argéticas. Medioamhientale

Evaluation and modelling: ²³⁹Pu

erc

European Research Counc

Ciemat

Centro de Investigacione:

Energéticas, Medioambientales y Tecnológicas

MINISTERIO

Y UNIVERSIDADES

DE CIENCIA, INNOVACIÓN

OBIERNO

Validation & sensitivity analyses

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Nuclear data needs for advanced reactor designs

4 different advanced reactor technologies are being explored in Europe:

MYRRHA

Pb/Bi-cooled Accelerator Driven System that can also be operated in critical mode. < 100 MW_{th}

ALFRED Pb-cooled critical reactor. ~ 300 MW_{th}

CIENCIA, INNOVACIÓN

ASTRID

Na-cooled critical reactor. ~ 1500 MW_{th}

ESFR

Na-cooled critical reactor.

 $\sim 3600 \text{ MW}_{\text{th}}$

European Research Counc

Ciemat

Energéticas, Medioambientale y Tecnológicas

ALEGRO Gas-cooled fast critical reactor. ~ 75 MW_{th}

Uncertainties due to nuclear data

These four examples of different systems do not meet the target accuracy for the k_{eff} because of the uncertainty due to nuclear data.

SYSTEM	k _{eff}	Unc ND (%)	ТА	
ESFR	1.00499(9)	1.04%	0.2 %	
ASTRID	1.00779(8)	0.97%	0.2 %	
ALFRED	0.99904(10)	0.877%	0.435%	
MYRRHA	1.01542(3)	0.76%	0.3%	

Uncertainty contributions to keff

■ESFR ■ASTRID ■ALFRED ■MYRRHA

Significant differences in the covariance matrices

erc

European Research Counci

JENDL-4.0u: ²³⁹Pu (n,f) (n,γ)

GOBIERNO

DF ESPAÑA

MINISTERIO

Y UNIVERSIDADES

DE CIENCIA, INNOVACIÓN

Ciemat

Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

JEFF-3.3: ²³⁹Pu (n,f) (n,γ)

CNR*24, IAEA 8th - 12th of July

Integral experiments

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Integral experiments at LR-0

SACS measured in LR-0 corrected to ²³⁵U PFNS.

	E _{50%}	SACS [mb]	Rel. unc.	Eval./E-1
¹¹⁵ ln(n,n')	2.589	209.3	2.70%	-10.30%
⁴⁷ Ti(n,p)	3.647	17.97	2.00%	-0.70%
⁶⁴ Zn(n,p)	4.036	38.21	5.30%	1.80%
⁵⁸ Ni(n,p)	4.051	106.1	2.20%	2.00%
⁵⁴ Fe(n,p)	4.294	78.33	2.40%	-0.30%
⁹² Mo(n,p)	5.19	6.938	2.20%	-3.60%
⁴⁶ Ti(n,p)	5.862	10.72	2.20%	7.40%
⁶⁰ Ni(n,p)	6.811	2.086	8.50%	4.50%
⁶³ Cu(n,α)	7.019	0.5009	2.90%	3.30%
⁵⁴ Fe(n,α)	7.205	0.8707	10.50%	-0.70%
⁵⁶ Fe(n,p)	7.362	1.05	2.60%	2.80%
⁴⁸ Ti(n,p)	8.103	0.2909	2.60%	3.60%
²⁴ Mg(n,p)	8.125	1.412	4.60%	2.60%
² Al(n,α)	8.471	0.6764	2.30%	3.60%
⁵¹ V(n,α)	9.737	0.0234	3.50%	4.00%
¹⁹⁷ Au(n,2n)	10.414	3.372	4.00%	0.40%
⁹³ Nb(n,2n) ⁹² *	11.21	0.4307	3.10%	0.90%
¹²⁷ l(n,2n)	11.459	1.177	4.00%	1.80%
⁵⁵ Mn(n,2n)	12.796	0.2324	4.50%	0.00%
⁷⁵ As(n,2n)	12.797	0.3228	4.30%	-1.10%
⁸⁹ Y(n.2n)	13.797	0.1698	3.20%	0.80%
¹⁹ F(n,2n)	13.911	0.00769	4.00%	5.90%
⁹⁰ Zr(n,2n)	14.32	0.1053	4.00%	-0.70%
²³ Na(n,2n)	15.483	0.00394	4.80%	-1.90%

Benchmarking

ALARM-CF-NI-SHIELD-001 "Neutron Activation Foils and Fast Neutron Leakage Spectra from Nickel Sphere with ²⁵²Cf Source in the Center"

ALARM-CF-FE-SHIELD-002 "Neutron Activation Foils and Fast Neutron Leakage Spectra from Iron Sphere with ²⁵²Cf Source in the Center"

ALARM-CF-SST-SHIELD-001 "Neutron Activation Foils and Fast Neutron Leakage Spectra from a Stainless Steel 321 Block with a ²⁵²Cf Source in the Center."

CNR*24, IAEA $8^{th} - 12^{th}$ of July

- High-quality nuclear data are essential for ensuring the safety and optimal operation of existing nuclear reactors, managing nuclear waste, designing news systems, and for many non-energy nuclear applications.
- Europe has a rather large inter-disciplinary Nuclear Data community, which has benefited from several EURATOM projects since FP6, among which EUROTRANS/ NUDATRA, ANDES, EUFRAT, ERINDA, CHANDA, and now SANDA, ARIEL and now APRENDE (2024 – 2028).
- The community is well organized and has strong links with the International Agencies (IAEA, NEA/OECD) and JEFF.
- The amount of work carried out in the EC ND projects is huge.

However, **the situation is precarious**, since it depends mainly on the variable (and underfinanced) EURATOM calls for its funding.

Nuclear data projects in Europe

HINDAS (16) KU-Leuven 3.3 M€ 2000 - 2003 High and Intermediate energy Nuclear Data for Accelerator-driven Systems	P-EUROTRANS (~20) KIT ~1 M€ NUDATRA 2005 - 2010 EUROpean research programme for the TRANSmutation of high-level nuclear waste n an accelerator driven systems ng + Transnational access pro RR, EURO-LABS) + Education		CHANDA (36) CIEMAT ~5.4 M€ 2013 - 2018 solving CHAllenges in Nuclear DAta grams (ERINDA, EUF		APRENDE (36+4) CIEMAT ~4 M€ 2024 – 2028 Addressing PRiorities of Evaulated Nuclear Data in Europe	
n TOF-ADS (18) CERN 2.4 M€ 2000 – 2004 Data for Accelerator Driven Systems nucleard data	CANDIDE (14) UU ~1 M€ 2007 - 2008 Coordination Action on Nuclear Data for Industrial Development in Europe	ANDES CIEMAT 2010 - 20 Coordina Accurate Nuclear Data for u Energy Sustainal	5 (21) ~3 M€ 013 tion nuclear bility	SANDA CIEMAT - 2019 - 202 Supplying Accurate Nuclear Data for e non-energ Applicatio	(36) -5.4 M€ 24 nergy and yy ns	
GOBIERNO MINISTERIO DE ESPAÑA DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES	Ciemot Centro de Investigaciones Energeticas, Medicambientales y Tenobojicas		CNR*24	IAEA 8 th – 12	th of July	85

Towards a European ND program

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Towards a sustainable European ND program

- Mobilization of Member States representatives for the inclusion of a new nuclear data project in HORIZON-EURATOM-2023-NRT-01-06
 -> APRENDE project.
- Joint effort between IAEA and NuPECC (preparing the long-range plan 2024). Organisation of **Consultants' Meeting on Comprehensive European plan to acquire and curate nuclear data** with invited participants representing nuclear physics research and EU ND community.
- Side event at the IAEA 2023 conference on Providing the Best Nuclear Data for Tomorrow's Nuclear Solutions: Challenges and Opportunities.
- NuPECC long-range plan will emphasise the importance of mastering the complete ND cycle and maintain the competences.

A European ND program (similar to the one existing in the USA) is needed:

- Bring together ND providers, database managers and stakeholders from all the domains needing ND to discuss current needs.
- Ensure the coordination of the work done by the ND community in Europe, identifying challenges and opportunities, and guarantying that ND end up in nuclear databases.
- Support key infrastructures for the production of ND.
- Ensure that a sufficient workforce is available, in particular for evaluation.
- Invest in education and training to bring new people into the nuclear data community.
- Ensure the liaison with international partners and agencies (NEA, IAEA).

The SANDA participants

CENTRO DE INVESTIGACIONES ENERGETICAS (Coordinator), KARLSRUHER INSTITUT FUER TECHNOLOGIE MEDIOAMBIENTALES Y TECNOLOGICAS-CIEMAT **USTAV JADERNE FYZIKY AV CR** Magyar Tudomanyos Akademia Atommagkutato Intezete NPL MANAGEMENT LIMITED COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES NUCLEAR RESEARCH AND CONSULTANCY GROUP NATIONAL TECHNICAL UNIVERSITY OF ATHENS - NTUA ALTERNATIVES EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH PAUL SCHERRER INSTITUT CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS PHYSIKALISCH-TECHNISCHE BUNDESANSTALT AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES STUDIECENTRUM VOOR KERENERGIE/ CENTRE D ETUDE DE L CIENTIFICAS ENERGIE NUCLEAIRE CENTRUM VYZKUMU REZ S.R.O. SOFIISKI UNIVERSITET SVETI KLIMENT OHRIDSKI AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA TECHNISCHE UNIVERSITAET WIEN E LO SVILUPPO ECONOMICO SOSTENIBILE UNIVERSITATEA DIN BUCURESTI UNIWERSYTET LODZKI HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF EV INSTITUTUL NATIONAL DE CERCETARE -DEZVOLTARE PENTRU JOHANNES GUTENBERG-UNIVERSITAT MAINZ FIZICA SI INGINERIE NUCLEARA "HORIA HULUBEI" (IFIN-HH) THE UNIVERSITY OF MANCHESTER INSTITUT DE RADIOPROTECTION ET DE SURETE NUCLEAIRE PANEPISTIMIO IOANNINON ASSOCIACAO DO INSTITUTO SUPERIOR TECNICO PARA A UNIVERSITAT POLITECNICA DE CATALUNYA INVESTIGACAO E DESENVOLVIMENTO UNIVERSIDAD POLITECNICA DE MADRID JRC -JOINT RESEARCH CENTRE- EUROPEAN COMMISSION UNIVERSIDAD DE SANTIAGO DE COMPOSTELA **INSTITUT JOZEF STEFAN** UNIVERSIDAD DE SEVILLA JYVASKYLAN YLIOPISTO UPPSALA UNIVERSITET

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

The APRENDE participants

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (Coordinator) Atommagkutato Intezet Commissariat a l'Energie Atomique et aux Energies Alternatives Organisation Europeenne pour la Recherche Nucleaire Centrum Vyzkumu Rez sro Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenible **European Spallation Source Eric** Grand Accelerateur National d'ions Lourds Helmholtz-Zentrum Dresden-Rossendorf EV Agencia Estatal Consejo Superior de Investigaciones Científicas Institutul National de Cercetare-dezvoltare pentru fizica si inginerie nucleara-horia Hulubei Istituto nazionale di fisica nucleare Institut de radioprotection et de surete nucleaire Institut Jozef Stefan Karlsruher Institut fuer Technologie LGI sustainable innovation Nuclear research and consultancy group Ethnicon metsovion polytechnion Institut Mines Telecom Institut Polytechnique de Grenoble JRC -Joint Research Centre- European Commission

Physikalisch-technische Bundesanstalt Studiecentrum voor Kernenergie/Centre d'etude de l'Energie Nucleaire Slovenska Technicka Univerzita v Bratislave Technische Universitaet Wien Universitatea din Bucuresti **Rijksuniversiteit Groningen** Panepistimio Ioanninon Jyvaskylan Yliopisto Uniwersytet lodzki Faculty of natural sciences and mathematics, university of Maribor Universitat Politecnica de Catalunva Universidad Politecnica de Madrid Universidad de Sevilla Sofia University St Kliment Ohridski Uppsala Universitet Ecole Polytechnique Federale de Lausanne Paul Scherrer Institut United Kingdom atomic energy authority NPL management limited The University of Edinburgh **European Nuclear Education Network** Centre National de la Recherche Scientifique Nantes Université Paul Scherrer Institut Ecole Politechnique de Lausanne National Physical Laboratory University of Edinbourgh

Announcement: ND2025 in Madrid

An excellent conference for presenting your work!

https://www.nd2025madrid.com/

Abstract submission is open!

Ciernote Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Spare slides

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

CNR*24, IAEA $8^{th} - 12^{th}$ of July

Nuclear Science for the Manhattan Project and Comparison to Today's ENDF Data by M. B Chadwick Nuclear Technology 207 (2021)

https://doi.org/10.1080/00295450.2021.1901002

ACIÓN Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Liquid Pb-loop

liquid lead circuit for heat transport

small Mo tube (11 mm diam.) with liquid lead as neutron radiator

Electron beam power up to 40 kW power density in the neutron radiator up to 25 kW/cm³

Single pulse to 400 kHz micropulse rate source strength 6 \cdot $10^{11}\,\text{n/s}$

SRF injector for photo neutron production variable repetition rate bunch charge up to 300 pC

kicker for parallel operation of neutron tof with high repetition rate experiments at ELBE

CAD design: Armin Winter

E. Altstadt et al., Ann. Nucl. Energy 34 (2007) 36

The PROMAS program

Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas

PROMAS project timeline

The infrastructure will be accessible to national and international academic research scientist.

Ciemat

Centro de Investigaciones

Energéticas, Medioambientales

y Tecnológicas

Experimental deposited energy spectra in one sTED module (Exp.-Back.) with background subtracted (Back.) and simulated with NuDEX+Geant4 (MC) for $^{197}Au(n,\gamma)$ cascades.

ÓN Ciempte Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Multi-foil activation with PET scanner

erc

European Research Council

Ciemat

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

GOBIERNO

DE ESPAÑA

MINISTERIO DE CIENCIA, INNOVACIÓN

Y UNIVERSIDADES

Multi-foil activation with PET scanner

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Pb nuclear data

V. Bécares y D. Villamarín, Resultados experimentales del proyecto FREYA dedicados al diseño y licenciamiento de MYRRHA/FASTEF.