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Motivation
▪ There is a need of reduced uncertainties for 

applications in nuclear technology, including 
the design of advanced reactors. 

▪ Also, uncertainties in the capture cross 
section impact our understanding of the 
criticality of U/Pu systems and transmutation 
rates.  

▪ Isotopes involved in the Th-U and U-Pu fuel 
cycles of interest for these studies. 
▪ 235U, 233U and 239Pu measured at 

LANSCE. 
▪ The capture-to-fission ratio measurement 

eliminates the systematic uncertainties 
derived from: 
▪ Neutron flux, self-shielding and sample 

mass.

Figure 1 Illustration of the thorium fuel cycle 
where 233U plays a role.
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▪ For some isotopes, the 
fission rate is considerable 
compared to capture. 

▪ Good discrimination 
between 𝛄-rays coming 
from capture and fission is 
required. 

▪ New measurements 
proposed at LANL 
combining a fission 
detector and DANCE.

The 233U measurement was the first 
ND measurement funded at LANSCE 

by NCSP!

▪ Experimental cross section data in the literature are sometimes scarce and measured decades 
ago with the detecting technologies available at the time (detectors, neutron flux and 
electronics). 

▪ New data are constantly required to update the nuclear data evaluations. 

Figure 2 233U capture-to-fission ratio from the literature
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LANSCE facility
▪ Neutrons produced by proton spallation on a W target. 
▪ DANCE: 

▪ Mark-III spallation target. 
▪ Flight path 14 (20 m). 
▪ White neutron spectrum (En = 10 meV - 500 keV). PSR p beam


(800MeV,

20Hz)

FP 14

n beams
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Figure 3 LANSCE facility illustration 07/09/24    4



5

57/18/22
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Detectors 

[1] M. Heil et al., Nucl. Instrum. Methods Phys. Res. A 459, 229 (2001).

DANCE (Detector for Advanced Neutron Capture Experiments)

Sample
DANCELiH ball

▪ 4πBaF2 𝛄-ray calorimeter composed by 160 crystals with an inner cavity of 17 cm 
radius [1].


▪ Used to measure neutron capture cross section data on small quantities of 
radioactive isotopes. Single 𝛄-ray detection efficiency of 85%.


▪ We can measure En, Esum, Ecl, and Mcl, providing more information than with C6D6 
detectors.


▪ A LiH ball is placed inside around the sample to absorb scattered neutrons.

Figure 4 233U DANCE sample (left), DANCE + LiH ball (center) and DANCE picture (right)
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Detectors 

NEUANCE (NEUtron detector array at dANCE)

▪ Neutron detector array that consists in 21 stilbene 
crystals arranged in a cylindrical geometry around the 
beam pipe [2]. 


▪ Used to detect neutrons coming from fission and 
determine by coincidence with DANCE, the fission 𝛄-
rays. 


▪ NEUANCE detects neutrons with energies above 500 
keV (fission neutrons have these energies), therefore low 
energy scattered neutrons that are below this 
threshold are discriminated.


▪ Single fission neutron efficiency of 12.5%. 

▪ Possibility to use a thick target -> higher statistics/lower 

measuring time required.

▪ NEUANCE can also detect 𝛄-rays.

[2] M. Jandel et al. Nuclear Inst. and Methods in Physics Research, A 882 (2018) 105-113.

Figure 5 NEUANCE instrument
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Detectors 

PPAC (Parallel Plate Avalanche Counter)

▪ 4π detection range [3]. 

▪ Used to detect Fission Fragments (FF) and determine by 

coincidence with DANCE, the fission 𝛄-rays. 


▪ Need to use a thin sample to achieve a high fission 
fragment detection efficiency -> lower statistics/larger 
measuring time required. 


▪ Charged particle detection efficiency of ~65%.


[3] M. Jandel et al. PRL 109, 202506 (2012).

Figure 7 PPAC for DANCE

Figure 6 PPAC geometry
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▪ Intrinsic radioactivity of BaF2 used to calibrate the DANCE crystals.

▪ Using the Alpha-decay chain of the 226Ra present in the BaF2.

DANCE calibrations

Figure 8 Pulse shape discrimination spectrum for DANCE crystals
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▪ Search for coincidences between 
the two detectors.


▪ The DANCE 𝛄-rays in coincidence 
with the fission particles (FFs/
neutrons) are tagged as fission 
gammas. 


▪ The purpose of tagging is to define 
the shape of the fission 𝛄-ray 
spectrum that can be subtracted 
from the total spectrum.

Fission tagging process

Normalization  
window

Figure 9 Fission tagging process 
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Background studies 
▪ The background varies with the neutron energy, therefore it is subtracted per En bin. 

Figure 10 Background subtraction process for 239Pu analysis

Mcl = 4 
Q = 6.53 MeV 
Esum = (5.7-6.7) MeV
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We measure a number of events Ci as a function of the neutron energy associated with process i (fission or capture):

and

Therefore, the capture to fission ratio can be expressed as:

Hence:

Capture-to-fission ratio
The capture-to-fission ratio is given by:

α(En) ≡
σγ(En)
σf (En)
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▪ Experimental advantages of the capture-to-fission ratio:

▪ It is much simpler and more reliable to determine experimentally as many 

of the systematic questions:

▪ Sample mass

▪ Self-shielding

▪ Neutron exposure

will cancel out in an appropriately designed experiment. 

Capture-to-fission ratio

▪ The relative capture cross section can be obtained multiplying the ratio by 
the evaluated fission cross section.
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Measurements at LANSCE

▪ Measured using the DANCE + PPAC setup from (4 eV to 1 MeV) .

▪ Three independent measurements for high precision in capture cross section:


▪ Measurement with a thick sample -> to increase statistics at high neutron 
energies.


▪ Measurement with a thin sample inside the PPAC -> for fission tagging.

▪ Measurement of the neutron scattering background using a 208Pb sample.


▪ Targets:

▪ Thick target of 26 mg/cm2 of 94% enriched 235U.

▪ Thin sample 130 ug/cm2 of 99.9% enriched 235U.

▪ Scattering sample of ~120 mg/cm2 of 99% enriched 208Pb.


▪ Results published in [4].

235U capture-to-fission ratio

[4] M. Jandel et al., Phys. Rev. Letters 109, 202506 (2012).
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▪ The alpha-derived capture cross section was calculated by multiplying the capture-
to-fission ratio by the ENDF/B-VII.0 fission cross section.


▪ The broadened cross section was used in the Resolved Resonance Region. 

Figure 11 Results of the alpha-derived 235U(n,𝛄) cross section

235U relative capture cross section
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▪ Measured using the DANCE + PPAC setup from (10 eV to 1.3 MeV) [5] - [7].

▪ Three independent measurements for high precision in capture cross section.

▪ Targets:


▪ Thin 937 ug of 99.97% enriched 239Pu.

▪ Thick ~50 mg of 239Pu.

▪ Scattering 200 mg/cm2 208Pb.

239Pu capture-to-fission ratio

[6] S. Mosby et al. Phys. Rev. C 97, 041601 (2018).

Measurements at LANSCE

[7] S. Mosby et al. Nucl. Data Sheets 148, (2018) 312-321.

Figure 12 Results of the 239Pu capture-to-fission ratio from 10 eV to 1 keV

[5] S. Mosby et al. Phys. Rev. C 89, 304610 (2014).
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▪ The alpha-derived capture cross section was calculated by multiplying the capture-
to-fission ratio by the ENDF/B-VII.1 fission cross section.


▪ The broadened cross section was used in the Resolved Resonance Region. 

Figure 13 Results of the alpha-derived 239Pu(n,𝛄) cross section from 10 eV to 1 keV

239Pu relative capture cross section
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▪ The alpha-derived capture cross section was calculated by multiplying the capture-
to-fission ratio by the ENDF/B-VII.0 fission cross section.


▪ The broadened cross section was used in the Resolved Resonance Region. 

Figure 14 Results of the alpha-derived 239Pu(n,𝛄) cross section from 1 keV to 1.3 MeV

239Pu relative capture cross section
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▪ Measured using the DANCE + NEUANCE setup from (0.7 eV to 250 keV).

▪ Normalization to ENDF/B-VIII.0 broadened cross section ratio in the neutron energy 

region (8.1-14.7) eV:

▪ Results published in [7].

Figure 15 Results of the 233U capture-to-fission ratio

233U capture-to-fission ratio

Measurements at LANSCE

[7] E. Leal-Cidoncha et al., Phys. Rev. C 108 014608 (2023)
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▪ The alpha-derived capture cross section was calculated by multiplying the capture-
to-fission ratio by the ENDF/B-VIII.0 fission cross section.


▪ The broadened cross section was used in the Resolved Resonance Region. 

233U relative capture cross section

Figure 16 Results of the alpha-derived 233U(n,𝛄) cross section
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▪ Statistical model calculations were performed by I. Stetcu, T. Kawano and A. Lovell with 
the CoH3 code [4] from 1 keV to 5 MeV (Energy for which only the first fission chance is 
involved). 


▪ This code combines the coupled-channels optical model and the statistical Hauser-
Feshbach model calculations by performing the Engelbrecht-Weidenmüller 
transformation of the penetration matrix. 

▪ Different values of the average 𝛄-
ray width have been tried by 
adjusting the M1 𝛄-ray strength 
function for the scissors mode. 


▪ Mughabghab gives 40 meV.

▪ To reproduce the data from Hopkins 

it had to be reduced to 24 meV. 

▪ A smaller value would be needed to 

reproduce this work. 

[4] T. Kawano, Springer Proceedings in Physics 254, 27 (2021)

Statistical Model Calculations

Figure 17 Statistical model calculations for 233U
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Conclusions
▪ The capture-to-fission cross section ratio eliminates the uncertainties associated to 

the neutron flux, sample mass and self-shielding. 

▪ It can be measured at LANSCE combining DANCE and a fission detector.

▪ A PPAC and NEUANCE have been used in combination with DANCE to detect FF and 

fission neutrons.

▪ Measurements of the 235U, 233U and 239Pu in the neutron energy region from eV to 

100s keV - 1 MeV have been performed in the last years. 

▪ The alpha-derived cross sections have been also calculated multiplying the ratio by 

the evaluated fission cross section. 

▪ Other detectors could be used in combination with DANCE to tag fission events in the 

future.
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