Approaching the pygmy dipole resonance in Sn isotopes with the Oslo method

> ¹<u>Markova Maria</u>, ¹A.C. Larsen, ¹ F.L.B.Garrote ¹University of Oslo, Department of Physics, Nuclear Physics group

> > 10 July 2024

Compound-Nuclear Reactions and Related Topics CNR*24

M. Markova (UIO)

 CNR^*24

The pygmy dipole resonance in nuclei

The giant and pygmy dipole resonance modes.

- ► Hydrodynamic interpretation of the IVGDR as an out-of-phase oscillation of protons against neutrons (enhancement of ≈ 100 % of the EWSR).
- The PDR is often associated with a low-lying E1 strength in the vicinity of the neutron threshold (several % of the EWSR).
- The macroscopic picture of the PDR is oscillations of a neutron excess against a N = Z saturated core.
- This macroscopic interpretation is still questioned and debated! (Toroidal dipole mode?)

The pygmy dipole resonance in nuclei

The giant and pygmy dipole resonance modes.

- ► Hydrodynamic interpretation of the IVGDR as an out-of-phase oscillation of protons against neutrons (enhancement of ≈ 100 % of the EWSR).
- The PDR is often associated with a low-lying E1 strength in the vicinity of the neutron threshold (several % of the EWSR).
- The macroscopic picture of the PDR is oscillations of a neutron excess against a N = Z saturated core.
- This macroscopic interpretation is still questioned and debated! (Toroidal dipole mode?)

Motivation: why PDR?

- ▶ Relation of the PDR to the neutron skin thickness \rightarrow equation of state \rightarrow information on neutron stars?
- ▶ Potential impact of the PDR on neutron capture rates and abundances of elements produced in the r-process.
- ▶ Appearance of the PDR increases probability of the (n, γ) reaction.

Left part: Relation between the a_4 and neutron skin thickness. A. Klimkiewicz, Phys. Rev. C 76, 051603(R) (2007) Right part: Probable pathway of the r-process.

GSF and NLD: The Oslo method as a method of choice

- ▶ Both the NLD and the GSF are important ingredients of statistical model calculations.
- ▶ The Oslo method is commonly used for a simultaneous extraction of these nuclear characteristics.
- ▶ There is a plethora of theoretical approaches, and systematic experimental constraints are highly demanded.

Why Sn isotopes?

Sn isotopes studied at the OCL

	4.4.0						110	110	100	101	100		101
¹¹¹ Sn	112 Sn	¹¹³ Sn	114 Sn	$ ^{115}$ Sn	$ ^{116}$ Sn	$ ^{117}$ Sn	$ ^{118}$ Sn	$ ^{119}$ Sn	$ ^{120}$ Sn	¹²¹ Sn	122 Sn	¹²³ Sn	¹²⁴ Sn

Sn isotopes studied at the OCL

Sn isotopes studied at the OCL

Oslo method: Experiments on Sn at the Oslo Cyclotron Laboratory

The principal scheme of the experiment.

Left: OSCAR LaBr₃:Ce detector array. Right: SiRi particle telescope.

^{111–113,116–122,124}**Sn:**

- SiRi Si particle telescope + NaI(Tl) (older)/ LaBr₃(Ce) (recent) detector array.
- ▶ 126° - 140° particle angles are covered.
- (p, p'γ), (p, dγ), (d, pγ), (³He,³He γ), (³He,αγ) reactions with 16 and 25 MeV proton, 11.5 MeV deuteron, 38 MeV ³He beams.
- ▶ particle- γ coincidences were extracted.

8/16

10 July 2024

<u>M. Markova</u> (UIO)

Main results: NLDs and GSFs of Sn isotopes

Main results: the GSF and PDR in $^{111-113,116-118}$ Sn

M. Markova (UIO)

10 July 2024

Main results: the GSF and PDR in $^{119-122,124}$ Sn

M. Markova (UIO)

M. Markova (UIO)

Conclusion 1:
The low-lying strength is
centered at ≈ 8.4 MeV in all
studied Sn isotopes.

Conclusion 2:

The low-lying component remains at ≈ 6.5 MeV in heaviest tins.

Conclusion 1:

The low-lying strength is centered at ≈ 8.4 MeV in all studied Sn isotopes.

Conclusion 2:

The low-lying component remains at ≈ 6.5 MeV in heaviest tins.

Conclusion 3:

Ranges from 2% to 3%, the largest strength in 120 Sn.

Conclusion 4:

The low-lying component increases in strength with N, the "real" PDR?

13/16

<u>M. Markova</u> (UIO)

Main results: the GSF and PDR vs. theory

STAND CCCN

Conclusion 1:

Good agreement with other experimental data.

Conclusion 1: Good agreement with other experimental data.

Conclusion 2:

Good agreement with the KADoNiS and BRUSLIB libraries.

Conclusion 1:

Good agreement with other experimental data.

Conclusion 2: Good agreement with the KADoNiS and BRUSLIB libraries.

Conclusion 3:

Experimental NLDs and GSFs of ^{122,124}Sn allow to significantly reduce the model and parameter uncertainties of neutron capture rates and abundances of ^{121,123}Sb produced in the i process.

Summary and conclusions

- The nuclear level densities and γ-ray strength functions of eleven Sn isotopes (^{111-113,116-122,124}Sn) have been extracted in a model-consistent way from particle-γ coincidence data with the Oslo method.
- ► The experimental low-lying *E*1 strength and its evolution in a large number of Sn isotopes have been addressed for the first time.
- ▶ Interpretation of the total low-lying E1 strength as the PDR appears to be unjustified. The low-lying peak at ≈ 6.4 MeV might potentially be associated with the isovector component of the PDR.
- ► The newly extracted statistical properties of ^{122,124}Sn nuclei significantly reduce currently available theoretical model uncertainties in astrophysical calculations.

Thank you for your attention!

