Statistical *y* **decay and pygmy resonance** ²⁰⁴TI measured at DANCE

I. Knapová¹, A. Couture¹, C. Fry¹, M. Krtička², C. J. Prokop¹, R. Reifarth¹, G. Rusev¹, J. Ullmann¹, S. Valenta² ¹ Los Alamos National Laboratory ² Charles University, Prague

Motivation

RADIATIVE NEUTRON CAPTURE

Experiment

- 160 BaF₂ scintillators, 4π ball
- Measuring γ cascades from ²⁰³Tl(n, γ)
- E_n thermal to hundreds of keV
- γ-cascade observables:
 - 1) neutron energy E_n

Neutron capture reaction

Statistical γ decay described by **level density** (LD) and **photon strength functions** (PSFs) • LD and PSF key ingredients for calculations of neutron capture cross sections

Pygmy resonance plays a crucial role in astrophysical calculations for neutron2) total detected energy E_{tot} 3) individual γ - ray energies E_{γ} 4) multiplicity M

EXPERIMENTAL SPECTRA

- Cut on E_{tot} = 5.8-6.8 MeV (S_n = 6.656 MeV)
- Gate on well-isolated *s*-wave and *p*-wave resonances
- Spectra of E_{γ} for different M

rich nuclei.

- Electric dipole (E1) PSF dominated by Giant Dipole Resonance (GDR)
- Neutron-rich nuclei a smaller resonance at lower energies observed, pygmy dipole resonance (PDR)
- PDR expected to become stronger when moving towards neutron-rich nuclei [1]

Resonances in electric dipole PSF [2]

Preliminary results

DICEBOX simulations

LA-UR-24-26118

- Monte-Carlo modelling of γ decay based on provided models of LD and PSFs
- Up to a given excitation energy E_{crit} = levels and their properties from evaluated data
- Above *E*_{crit} statistical approach
- Porter-Thomas fluctuations of partial radiation widths
- Simulating different realizations sets of levels and their decay probabilities
- γ cascades fed to **Geant4 simulation** of the detector response

- First experimental data in PDR region for TI isotopes
- Reference **PSF database [2] and RIPL3 [3]** models not satisfactory in ²⁰⁴TI
- **Resonance-like structure around 5-6 MeV** clearly observed in the experiment
- Experimental spectra cannot be reproduced without a resonance at these energies

[1] D. Savran et al., Prog. Part. Nucl. Phys 70 (2013) 210 [2] A. Bracco et al., Prog. Part. Nucl. Phys 106 (2019) 360 [3] https://www-nds.iaea.org/PSFdatabase/ [4] https://www-nds.iaea.org/RIPL-3/

Simulated γ -ray spectra with widely used models of E1 PSF compared to the experiment

Simulated γ -ray spectra with E1 PSF based on ¹⁹⁶Pt exp. data compared to the experiment

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA.

Supported by LDRD-20240739PRD1