

New measurements of ⁶³Cu(α,γ)⁶⁷Ga reaction compared with improved calculations

<u>M. Peoviti^{1,2}, M. Axiotis¹, N. Patronis², P. Dimitriou³, V. Foteinou⁴, S. Harissopulos¹, F. Maragkos^{4,5}, D. Rogalla⁴</u>

¹Tandem Accelerator Laboratory, Institute of Nuclear Physics, NCSR "Demokritos", 153 10 Aghia Paraskevi, Athens, Greece
²Department of Physics, University of Ioannina, 45110 Ioannina, Greece
³Nuclear Data Section, International Atomic Energy Agency, 1400 Vienna, Austria
⁴Central Unit for Ion Beams and Radionuclides, Ruhr-University Bochum, 44801 Bochum, Germany
⁵Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece

Introduction

Two nucleosynthetic processes, the s-process and r-process, are responsible for producing most elements heavier than iron. However, these mechanisms cannot account for the creation of 35 proton-rich nuclei, known as p-nuclei. Consequently, a third mechanism, the p-process, is proposed for their formation. Despite their small number, p-nuclei are of interest in nuclear astrophysics due to the discrepancy between theoretically predicted and observed abundances. Abundance calculations in astrophysical models require cross-section input from a vast nuclear reaction network. Measuring every cross-section is practically impossible, thus, predictions often rely on the Hauser-Feshbach theory. In this work, experimental data from the ${}^{63}Cu(\alpha,\gamma){}^{67}Ga$ reaction were compared with refined theoretical calculations aiming to improve the parametrization of the calculations.

Experimental details

Central Unit for Ionbeams and Radionuclides, Ruhr Universitat Bochum, Germany 12 x 12" single-crystal scintillator

 4π γ-summing method
349 µg/cm² foil of ⁶³Cu (determined via XRF)
E_{lab} ~ 5.3 - 8.6 MeV

Conclusions

The cross-section of the reaction ${}^{63}Cu(\alpha,\gamma){}^{67}Ga$ was measured at the RUBION Institute, using the $4\pi \gamma$ -summing method, in seventeen energies relevant to nuclear astrophysics. The results are consistent with previous activation measurements. Cross-section calculations were performed using TALYS 1.96 with the goal of optimizing the parametrization of the α OMP model. Optimal parameter values were determined through χ^2 calculations, using only the experimental points below the (α ,n) channel threshold. The optimized model accurately describes both the reaction cross-section as well as the S-factor.

*This work is supported by project "Dioni: Computing Infrastructure for Big-Data Processing and Analysis" (MIS No. 5047222) co-funded by European Union (ERDF) and Greece through Operational Program "Competitiveness, Entrepreneurship and Innovation", NSRF 2014-2020.

