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: Small parameter
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Linear response of the time-dependent Hartree Fock (HF) equations
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Our FAM/QRPA is applicable to DWBA calculations for neutron-induced inelastic 
scatterings by using a nuclear force as the external field instead of E1 and M1 operators. 
We demonstrate 208Pb (n,inl) as in M. Dupuis et al. [4]. We multiply a factor (a+2)(a+1)/2 
by a three-body term in the Skyrme [5] where a is the density dependence of the 
Skyrme force. We also consider the Perey effect (b=0.85).

Incoming distorted wave:

Outgoing distorted wave:

Nuclear force (Skyrme SLy4):

Skyrme

Double differential cross section

Progress of microscopic theories for nuclear many-body systems is continuously  required 
for basic science and various practical applications. Stellar nucleosynthesis such as the 
rapid neutron capture process (r–process) is a typical research subject where the nuclear 
theory is indispensable due to the missing experimental data for many radioactive 
unstable nuclei in stars. 

We derive the fully self-consistent quasiparticle random-phase approximation (QRPA) 
equations with noniterative finite amplitude methods (FAMs) and calculate the transition 
strengths of giant resonances [1]. Then, we apply the QRPA results to neutron radiative 
capture calculations based on the statistical Hauser-Feshbach theory [2]. Finally, we show 
preliminary results of inelastic scattering calculations based on QRPA plus distorted-wave 
Born approximation (DWBA).

Residual interaction

FAM is an efficient calculation method to solve the residual interaction and the linear 
response equations [3]. FAM was applied to calculate photoabsorptions, b-decays, and 
spontaneous fissions.
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: Frequency

The explicit linearization of the residual interaction avoids iterative procedure used in 
other conventional FAM and fully self-consistent (Q)RPA equations are derived from the 
linear response equations with Skyrme forces [1,2]. The transition strength and cross 
sections are calculated with the forward and backward amplitudes, X and Y obtained 
from the (Q)RPA equations.
Explicit linearization 

(Q)RPA equations

1p-1h transition induced by 
             the weak external field Vext(w)

q.. neutron,proton

Transition strength
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The electric giant dipole resonance (E1) is 
calculated by substituting the E1 operator 
for the external field Vext(w) [1]. Our 
FAM/(Q)RPA calculation reproduces well 
the resonance energies for heavy nuclei 
without any adjustment parameter. The 
energy-weighted sum rule m1 computed 
from both HF ground-state density and 
the integration of sabs is consistent within 
a few percent.

Eg (=Rew) [MeV]

The M1 transition is calculated by 
employing the M1 operator for the 
external field Vext(w) [2]. 

LA-UR
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Low energy transitions (Eg <4MeV) are 
associated with the orbital operator 
that can be seen as M1 scissors modes. 

Our FAM/QRPA calculation overestimates the total strength for the scissors mode
(SB(M1)exp 〜 3µN2 ), which can be improved by introducing the quench of the g(i)s .

The strength of low energy M1 transition (fM1 (Eg < 4 MeV)) contributes to about half 
of the total calculated capture cross section (red solid line). The underestimation of the
cross section could be improved by uncertainties of the low energy E1 transition 
neglected in our QRPA calculation.

Capture cross section

We apply the g-ray strength function to 
calculations of a transmission coefficient Tg 
and neutron capture cross sections based 
on the statistical Hauser-Feshbach theory 
with CoH3 code [2]. 

g-ray strength function

The QRPA results for photoabsorption cross 
sections sabs (Eg ,XL) (XL=E1,M1) are used 
to calculate g-ray strength functions [2]. 
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31-         0.611               0.656            2.615      3.625 
51-         0.0447             0.0415          3.198     4.625
21+   0.318                0.298            4.086     4.938            

Bexp(EL)          BQRPA(EL)           E*exp        E*QRPA

Transition strength & excitation energy

JkP [102L e2 fm 2L]                         [MeV]
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