Study of the 09T m(n,y) reaction using DANCE facility at LANSCE
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Motivation
e Thulium — mono-isotopic element, stable isotope A = 169, 0. = 107(2) b ,";
o '"Tm: Ti/, = 128.6d = neutron-flux activation monitor = good knowledge of 0., needed o M specumm=2-0 ! ' ° E%F paramet.ers taken from Oslo analysie of
_ O . W Ho [4] with SM at 3.14(7) MeV, width
e significant discrepancies in unresolved resonance region (URR) data, see Fig. 1 G G “ of 0.98(9)MeV, and the integrated strength

S B(M1) = 4.2(5) u4,, F1 PSF given by GLO
model plus pygmy resonance, paired with BSFG
LD from Ref. |6]

e scarce and discrepant resolved resonance region (RRR) data

e state-of-the-art analyses - one in RRR by Wang et al. [1]| and
one in URR by CSNS Back-n Collaboration [2]

intensity (arb. units)

160TH TSC analysis 3] proposed SM at 2.6 MeV
and 0.6 MeV wide, with >~ B(M1) = 6(1) u4 in
conjunction with MGLO E1 PSF and BSFG LD
model |6]

e photon strength functions (PSFs) and level densities (LD) studied in many neighbouring isotopes, but
rarely in odd-odd ones — two-step v cascade (TSC) measurement of 1°°Tb [3] & Oslo analysis of 1°°Ho [4]

e scissors mode (SM) consistently observed in rare-earth nuclei, but PSFs from different reactions show B R R S (;ﬁ e 7 1 2 3 it q . . . .
. . . y-ray energy (Me nsatisfactory description of our experimenta
discrepancies, see Fig. 2 u y p u p

data with both proposed model combinations

Figure 5: Comparison of experimental and simulated ,
and their parameters

spectra. LD and PSFs were taken from *°°Ho Oslo anal-
ysis [4] and '°°Tb TSC measurement [3].

e Back-Shifted Fermi Gas model (BSFG) of LD performs well in deformed rare-earth nuclei

[ * Block 1961 | —— TSC E1+M1 |
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c e = | * e significant influence of SM on the decay
= "'++ o
§ %m. E " e our data are sensitive to the type of transitions, SM-like resonance in E'1 PSF significantly worsens
é 10° 4 f.w..u % " ++/"“'~' description of experimental data, see Fig. 6 = M1 SM observed
O = 5 . : : :
o 3 e so far best description achieved with SM at 3.2 MeV, width of 1.0 MeV and strength about 9 u%;
-.'... —O
."'.5,.\ e we can not rule out energy of SM as high as 3.5 MeV, see Fig. 7
o v .
R e 1ot 12 1 e J > 3 2 5 6 7 e SM located at energies lower than 3 MeV gives much worse results, see Fig. 7
neutron energy (keV) E, (MeV)

e the favorable £'1 PSF model is MGLO |[7], best results found for £ = 5, LD given by BSFG model |[8|

Figure 1: Data on o4 in keV region as collected from Figure 2: PSFs plot. Datapoints labeled Oslo are o : .. : :
the EXFOR database [5]. The labels correspond to the  taken from Ref. |[4], curves labeled TSC correspond to e other model combinations provide acceptable description of experiment, e.g. KMF E1 model paired

entries as listed therein. PSFs proposed in Ref. [3]. with CTF LD = model uncertainty of efficiency in cross section calculation
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Experiment and Analysis o Sumseanmmn =26 | 1A ns
e data from Los Alamos Neutron Science Center (LANSCE) of Los Alamos National Laboratory, using = 0.05 - h'h,f
the Detector for Advanced Neutron Capture Experiments (DANCE) = € +"+4#W
é e —— - - e ............ I----I.-};?"&J_‘_‘_L
e neutrons, with energies from sub-thermal to units of MeV, produced in a spallation reaction of 800-MeV j:;’, 0.08) o s b ‘;3 .
protons striking a tungsten target 5 006l j I 5 e
k= gy | £ atechvie
. . . . . E at 3.5 Me
e DANCE detector, placed 20.25m from the spallation target, consists of 160 BaFy scintillation crystals 0.0ar —**L +:::)e:z:ntﬂ Y
covering solid angle ~ 3.57 PR [N
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Figure 6: Comparison of exp. and sim. spectra. The Figure 7: Comparison of exp. and sim. spectra. The
BSFG LD [8] and MGLO E1 PSF [7] models were used. = model combination is the same as in Fig. 6, but the SM
See text for details on the low-lying PSF resonance. was centered at 2.8 MeV and 3.5 MeV, respectively.
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Cross section

e combination of thin sample data, up to 300 eV, and thick sample data above 300eV up to almost 1 MeV

e cfficiency by DICEBOX & GEANT4 practically the same for all J™ of s- and p-wave resonances

e SAMMY and SESH codes used to calculate self-shielding and multiple-interaction corrections

Figure 3: Left: One hemisphere of the DANCE detector. Center: A sketch of the DANCE detector. Right: High ) DANCE data —— 1 DANCE data ——
. . . 104 : ENDF/B-VIII.0 broadened E Block 1961

resolution image of the thick Tm sample mounted on a frame. - 3 : 37 Gibhors 1961« +

Macklin 1982 = _
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e neutron flux monitored by a silicon detector measuring °Li(n,t) reaction, 23U fission chamber, and oA Xia 1989 e

3He proportional counter
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e cross section normalization using the standard 4.9 eV resonance in 7 Au(n, )

[
o
o

cross section (b)
cross section (b)

e cvents with Fg,n > 4.0 MeV and multiplicity M > 2 used to extract the cross section

e the multi-step cascade (MSC) spectra constructed from 1-MeV wide interval around the @)-value using
20 resonances with J™ =17
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e background due to scattered neutrons subtracted using ancillary measurement with Pb sample En (eV) En (eV)
e ~ cascades generated under various assumptions on PSFs and LD models using DICEBOX code were Figure 8: Comparison of our experimental cross sec- Figure 9: Comparison of our experimental cross sec-
subsequently processed by GEANT4 simulation of the DANCE array tion with evaluated '°°Tm cross section from ENDF/B-  tion in the URR with corresponding data as collected

VIII.0, broadened by the resolution function of the spal-  from the EXFOR database |[5]. The labels correspond
lation target Mark III at LANSCE. to the entries as listed therein.
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Summary and Outlook

overall our cross section in excellent agreement with ENDF /B-VIII.0 evaluation

we observe significant structures up to E,, ~ 6keV

|

our cross section data disagree with ones by Gibbons and the high energy part of Macklin’s

new resonance identified at E,, = 184.7(5) eV

O 1 1 1 1 L1 11 I 1 1 1 1 L1 11 I 1 1 1 1 L1 11 I . .
10 102 10° our MSC spectra clearly show enormous influence of scissors mode on the decay

E, (eV)

to finish the MSC analysis: consistency check with 0% resonances spectra and fine scan of SM and
Figure 4: Two dimensional experimental spectrum for thin Tm sample, horizontal axis shows time-of-flight after FE'1 PSF parameters

transformation to neutron energy. Events with M = 2 — 5 were used to construct the spectrum.
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