

Evaluation of Transmission Coefficients in Nuclear Processes

Cristiana Oprea^{1,2}, Alexandru Oprea³

¹National College "Emanoil Gojdu", Oradea, Transylvania, Romania ²Research and Development Center "NUCLEAR MATTER IN EXTREME CONDITIONS" of the Faculty of Physics, University of Bucharest, Romania

³Technical College "Alexandru Roman", Alesd, Transylvania, Romania

7th International Workshop on Compound-Nuclear Reactions and Related Topics 8 - 12 July 2024, International Atomic Energy Agency, Vienna, Austria

1. AIMS OF THE WORK

Evaluation of transmission coefficients in nuclear reactions using a quantum mechanical approach

2. MOTIVATION

Transmission coefficients (TC) were evaluated for charged and neutral particles TC = Probability of a micro-particle to pass a potential barrier -> 0 <= TC < 1 a) Important for nuclear reactions and time of life of nuclear states b) In many programs TC are calculated applying approximations (ex. Gamow)

3. METHODS

Quantum-mechanical approach based on **Reflection Factor U**_I

Logarithmic derivative D_I is a function of U_I and internal wave functions / U_I depends of ingoing and outgoing functions / Internal wave function is unknown and in our calculations is considered a plane wave / Ingoing and outgoing functions are pondered sum of regular and irregular functions for charged and neutral particles Neutral particles – Bessel functions / Charged particles – regular and irregular

Coulomb functions

Functions -> have an Integral form with Complex Functions

4. RESULTS

TC for neutrons, protons, and alpha particles. Results used for the evaluations of (n,α) cross sections for medium and heavy nuclei like ¹⁴⁷Sm, ⁶⁴Z, ¹⁴⁴Nd and other nuclei were calculated.

They were used also in the evaluations of Widths Fluctuations Correction Factor

5. CONCLUSIONS

Evaluated TC for neutrons and alpha particles described well experimental cross sections

(n,α) data / Necessary to evaluate in the future energy dependences of WFC factor **TRANSMISSION COEFFICENTS T**

$$U_{l} = \begin{cases} D_{l} - R \left[\frac{1}{W_{l}^{-}} \frac{dW_{l}^{-}}{dr} \right] \\ \frac{1}{D_{l} - R \left[\frac{1}{W_{l}^{+}} \frac{dW_{l}^{+}}{dr} \right]} W_{l}^{+} \end{cases}_{R}$$

$$T(l, E) = 1 - |U_l(E)|^2$$

INNER WAVE FUNCTION AS A SUM OF IN AND OUT- GOING FUNCTIONS

REFLECTION FACTOR

$$W_l(r) \sim W_l^{-}(r) - U_l W_l^{+}(r)$$

$$D_l = R \left[\frac{1}{W_l} \frac{dW_l}{dr} \right]_R \text{ LOGARTHMIC DERIVATIVE}$$

LOGARTHMIC DERIVATIVE

TRANSMISSION COEFFICIENTS

Dependence by orbital momentum *I* of a) Regular and irregular Coulomb functions

 (F_{l}, G_{l}) b) Derivatives of regular and irregular Coulomb functions (DF_{l}, DG_{l})

$$F_{l} - iG_{l} = \frac{e^{-\pi\rho}\rho^{l+1}}{(2l+1)!c_{l}(\eta)} \int_{-1}^{-i\infty} e^{-i\rho t} (1-t)^{l-i\eta} (1+t)^{l+i\eta} dt,$$

$$c_l(\eta) = \frac{2^l e^{-\frac{\pi\eta}{2}} \left| \Gamma(l+1+i\eta) \right|}{\Gamma(2l+2)}$$

¹⁴³Nd(n, α)¹⁴⁰Ce. Orbital momentum: a) Neutrons, $I_n = 0, 1, 2$; Alphas, $I_a = 0, 4, 8$

TC are positives and lower than 1