Evaluation of the transmission coefficients In nuclear processes
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Abstract. Transmission coefficients describe the probability that a micro-particle will pass through a potential barrier. Using a quantum mechanical approach, the reflection factor is used to calculate the transmission coefficients for charged and neutral particles. There are no approximations used
in the proposed method for describing incoming and outgoing wave functions of charged and neutral particles. Logarithmic derivative is calculated using a rectangular potential in the internal region. With a computer code developed by the authors, and based on Hauser-Feshbach formalism,
cross-sections of fast neutron-induced reactions followed by the emission of charged particles are evaluated. When discrete states of residual nuclei are considered, the realized codes agree with experimental data well. The present quantum approach can be extended to continuum states of
residual nuclei using the integral form of penetrability coefficients, including nuclear density states described by nuclear Fermi-gas model.
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