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Transmission (or penetrability) coefficients T 

- represents the probability of a particle to pass a potential barrier 

Defined as probability  

-> T  1 

Importance  

- nuclei decay constant  

- cross section evaluations 

Few approaches in the evaluations of Transmission coefficients 

- semiclassic (“so-called”) – using the Gamov Factor 

- quantum – mechanical approach – using the reflection factor 

CODES. COULOMB AND NUCLEAR POTENTIAL RESULTS. COULOMB FUNCTIONS FOR CHARGED PARTICLES  

CROSS-SECTION EVALUATIONS FOR 64Zn(n,a)61Ni REACTION  

RESULTS. ALPHA TRANSMISSION COEFFICIENTS  

2. Theory/ Hauser-Feshbach Formalism. Cross Sections  




c

cT

TT a

aa  2

Historically first Hauser-Feshbach expression 

a

a

aa  W
T

TT

c

c
 2

WFC. Indicates a correlation between the ingoing channel (incident)  

and outgoing channels 

At low energies (<1 MeV) WFC=1 - no correlation between in and  

out channels 

For neutron induced reactions with emission of charged particles  

this factor is slowly decreasing with energy for fast neutrons 

It is calculated by complicate procedures (ex. Moldauer expression) 

 
THEORY. WIDTH FLUCTUATION CORRECTION FACTOR  
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Width Fluctuation Correction Factor (WFC) 

- Represents a correlation between incident and emergent channels 

- At low energies WFC = 1 

- Then slowly decreasing with energy 

- Mainly three ways of evaluation 

- Moldauer expression chosen 

THEORY. T – Semi-classical Method  
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The integral represents the Gamow factor 

m= reduced mass 

V(r) = nuclear potential (rectangular, Wood – Saxon etc) 

h_bar = reduced Planck constant 
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THEORY. QUANTUM MECHANICAL  APPROACH  
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TC as a function of reflection factor 

Reflection Factor                      Logarithmic Derivative 

Inner Wave Function as Linear  

Combination of Ingoing (+) 

and Outgoing (-) Functions  

Radial Schrodinger  

Equation 

THEORY. REGULAR AND IRREGULAR FUNCTIONS  
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Neutral Particles: Wave 

Function (WF) – Linear 

Combination of Neumann 

(nl) and Bassel Functions (jl) 
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Charged Particles: WF – 

Linear Combination of 

Regular (Fl) and Irregular 

(Gl) Coulomb Functions 

THEORY. NEUTRAL & CHARGED PARTICLES WF  
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Neutral Particles WF – as 

solutions of the differential 

Schrodinger Equation 

Charged Particles WF – as 

solutions of the differential 

Schrodinger Equation with 

Coulomb Term ~1/ 

THEORY. CHARGED PARTICLES- INTEGRAL FORM  
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Regular and Irregular Coulomb Functions (Fl, Gl) 

Gamma Function and Coulomb parameter 

3. CODES  

1. TRANSMISSION COEFFICIENTS – SEMICLASSICAL METHOD 

- EVALUATION OF GAMOW FACTOR  

2. TRANSMISSION COEFFICIENTS – QUANTUM MECHANICAL 

APPROACH 

- TRANSMISSION COEFFICIENTS – STARTING WITH REFLECTION FACTOR 

- FUNCTIONS FOR NEUTRAL AND CHARGED PARTICLES – FULL CALCULATED 

WITHOUT APPROXIMATIONS 

- FOR CHARGED PARTICLES –INTEGRAL REPRESENTATION OF REGULAR AND 

IRREGULAR FUNCTIONS WAS USED 

- IN THE INNER REGION – WAVE FUNCTION -> PLANE WAVE  

3. HAUSER – FESHBACH APPROACH 

- USING BOTH APPROACHES FOR TRANSMISSION COEFFICIENTS 

- ANGULAR CORRELATIONS 

- EXPERIMENTAL DATA PROCESSING 
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Potential - sum of Nuclear (V0), Coulomb (VCoul) and Centrifugal potential Vcf 

Potential – Graphical Representation 

4. RESULTS AND DISCUSSION 

NEUTRON TRANSMISSION COEFFICIENTS  
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Calculated for 27Al(n,a24Na with fast 

neutrons 

- Heat of reaction – Q = 2.95 MeV; 

Neutron orbital momentum, ln = 0, 2, 4 

- Shape of energy dependences – same 

tendency but not the same shape 

- in semiclassical method–faster are 

going to 1, in Quantum Mechanical 

approach – smoothly increasing to 1 
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Transmission coefficients - QM Approach
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Calculated for 27Al(n,a24Na with fast 

neutrons 

- Heat of reaction – Q = 2.95 MeV; Alpha 

orbital momentum, la = 0, 2, 4 

- Semiclassical method–faster are going to 1, in 

QM approach – smooth increasing to 1 

- In the same way that neutrons behave 

- Importance for cross sections and angular 

correlations 

RESULTS. NEUTRAL PARTICLES. TRANSMISSION COEFFICIENTS 
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Ingoing and Outgoing 

Functions calculated  in 

Quantum Mechanical 

Approach 

RESULTS. DERIVATIVES FOR NEUTRAL PARTICLES 
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Derivative of Neutral Particle Wave 

Functions calculated  in Quantum 

Mechanical approach 

- Functions with Real and Imaginary part 

- Importance for the calculation of 

Logarithmic Derivative Function 
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Charged particle Regular and Irregular / Coulomb Functions (Fl, Gl) for Alpha particles in 27Al(n,a)24Na Process 

with Fast Neutrons / Functions with Real and Imaginary Part / Necessary for Logarithmic Derivative 
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En, MeV 1 (mb) 2 (mb) 

1 0.029 0.033 

3 6.3 25 

5 160 43  

Theoretical Evaluations  / Gamow Factor( 1)  / QM Approach (2) 

Experimental Data 

CROSS-SECTION EVALUATIONS FOR 147Sm(n,a)144Nd REACTION  

En, MeV 2 (mb) En, MeV exp(mb) 

2 0.11 20.10 0.197 0.035 

3 0.23 50.16 0.23 0.023 

6 0.94 60.12 0.28 0.023 

XS calculated with QM approach (2) 

- good description for discrete states of residual nucleus 

- with increasing of neutron energy other channels are open and 

should be considered 

- Necessary to include continuum states of residual nucleus 

- Realized by authors with Talys 

RESULTS. - 147Sm(n,a)144Nd – Transmission coefficients  

Energy dependence of neutron and alpha transmission coefficients 
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Calculated with our soft based on the considered quantum mechanical approach 

RESULTS. 143Nd(n,a)140Ce Compound Nucleus mechanism and Hauser-Feshbach  approach  

0 5 10 15 20 25

0.0

0.1

0.2

0.3

0.4

0.5

3

2

1

Neutrons orbital moment

1 - l
n
 = 0

2 - l
n
 = 1

3 - Total

143
Nd(n,a)

143
Ce


n
a
 [

m
b

]

Neutrons Energy, E
n
 [MeV]

Cross Sections are very low / Difficult to obtain experimental data / Only compound 

processes and discrete states of residual nucleus are involved /  Shape of energy 

dependences as expected / Neutrons with orbital momentum ln = 0,1 / Type of Optical 

Potential U = V + iW = 172 + ix0. 

En 

[MeV] 

Exp 

[mb] 

Eval /2/ 

[mb] 

4 ± 0.23 0.12 ± 0.01 0.14 

5 ± 0.16 0.21 ± 0.01 0.26 

6 ± 0.12 0.31 ± 0.03 0.37 

RESULTS. 143Nd(n,a)140Ce  Transmission coefficients – Quantum Mechanical  Approach 
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143Nd(n,a)140Ce (Qna = 9.72 MeV) neutrons 0.5 to 25 MeV - orbital momentum ln = 0,1,2; la= 0,4,8 

- Spin and parity of 143Nd and 140Ce nuclei, JP = (7/2)- and 0+, respectively 

-considered g, p, n, n’, a channels;  
 

Neutron energy dependence of neutron and alpha transmission coefficients 

5. CONCLUSIONS  

Transmission coefficients were evaluated by two methods 

- Semiclassical Method using Gamow Factor 

- Quantum Mechanical Approach using Reflection Factor 

QM Approach – Ingoing and Outgoing Wave Functions were calculated without approximations 

- Differences in the shape of Transmission Coefficients were evidenced   

- In the considered Quantum Mechanical Approach Transmission Coefficients are smoothly increasing with 

energy and slowly tend to 1 

Transmission Coefficients were used in the (n,a) processes with fast neutrons with energies of few MeV 

Codes were realized by implementing Hauser-Feshbach formalism and considered Quantum Mechanical 

Approach for transmission coefficient calculations 

- Rectangular optical potential were used 

- Good description of cross-section for few MeV neutron energy, of interest in the investigations of nuclear 

reaction mechanisms and astrophysics 

Abstract. Transmission coefficients describe the probability that a micro-particle will pass through a potential barrier. Using a quantum mechanical approach, the reflection factor is used to calculate the transmission coefficients for charged and neutral particles. There are no approximations used 

in the proposed method for describing incoming and outgoing wave functions of charged and neutral particles. Logarithmic derivative is calculated using a rectangular potential in the internal region. With a computer code developed by the authors, and based on Hauser-Feshbach formalism, 

cross-sections of fast neutron-induced reactions followed by the emission of charged particles are evaluated. When discrete states of residual nuclei are considered, the realized codes agree with experimental data well. The present quantum approach can be extended to continuum states of 

residual nuclei using the integral form of penetrability coefficients, including nuclear density states described by nuclear Fermi-gas model.  

aW Width Fluctuation 

Correction Factor 

(WFC)  

= Coulomb potential  

z = Charge of incident particles 

 Z = charge of residual nucleus 
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