% TRIUMF

Ab initio investigation of the ¹²C(n,p)¹²B charge-exchange reaction

The 7th international workshop on Compound-Nuclear Reactions and Related Topics (CNR*24)

Vienna International Centre, IAEA July 8th, 2024

Petr Navratil

TRIUMF

1

erat

Ð

Outline

- *Ab initio* nuclear theory
 - No-core shell model (NCSM) and NCSM with continuum (NCSMC)
 - Input chiral NN+3N interactions
- Charge exchange reactions in NCSMC
 - ¹²C(n,p)¹²B

% TRIUMF

Ab initio nuclear theory

First principles or ab initio nuclear theory

Ŀ

Ab initio No-Core Shell Model (NCSM)

Ab initio no core shell model Bruce R. Barrett^a, Petr Navrátil^b, James P. Vary^{c,*}

Review

5

Basis expansion method - Harmonic oscillator (HO) basis truncated in a particular way (N_{max})

- Why HO basis?
 - Lowest filled HO shells match magic numbers of light nuclei (2, 8, 20 – ⁴He, ¹⁶O, ⁴⁰Ca)
 - Equivalent description in relative(Jacobi)-coordinate and Slater determinant (SD) basis
- Short- and medium range correlations
- Bound-states, narrow resonances

Ab initio No-Core Shell Model (NCSM)

Bruce R. Barrett ^a, Petr Navrátil^b, James P. Vary ^{c,*}

Review

Ab initio no core shell model

- Harmonic oscillator (HO) basis truncated in a particular way (N_{max})
- Why HO basis?
 - Lowest filled HO shells match magic numbers of light nuclei (2, 8, 20 – ⁴He, ¹⁶O, ⁴⁰Ca)
 - Equivalent description in relative(Jacobi)-coordinate and Slater determinant (SD) basis
- Short- and medium range correlations
- Bound-states, narrow resonances

$$\Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi^{HO}_{Ni}(\vec{\eta}_{1}, \vec{\eta}_{2}, ..., \vec{\eta}_{A-1})$$

$$\Psi_{SD}^{A} = \sum_{N=0}^{N_{max}} \sum_{j} c_{Nj}^{SD} \Phi_{SDNj}^{HO}(\vec{r}_{1}, \vec{r}_{2}, ..., \vec{r}_{A}) = \Psi^{A} \varphi_{000}(\vec{R}_{CM})$$

6

 $E = (2n + l + \frac{3}{2})\mathfrak{h}\Omega$

Ab Initio Calculations of Structure, Scattering, Reactions Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| {}^{(A)} \mathfrak{B}, \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} \left| \mathfrak{B}_{(A-a)}^{\vec{r}} \mathfrak{B}_{(a)}, \nu \right\rangle$$

S. Baroni, P. Navratil, and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} | \stackrel{(A)}{\Longrightarrow}, \lambda \rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} | \stackrel{\vec{r}}{\bigoplus}_{(A-a)} (a), \nu \rangle$$

$$N = N_{\max} + 1 \stackrel{\vec{h}\Omega}{\longrightarrow}_{N=1} (A) \stackrel{\vec{h}\Omega}{\longrightarrow}_{N=0} (A) \stackrel{\vec{h}\Omega}{\longrightarrow}_{N=0} (A) \stackrel{\vec{h}\Omega}{\longrightarrow}_{N=1} (A) \stackrel{\vec{h}\Omega}{\longrightarrow}_{N=0} (A) \stackrel{\vec{h}\Omega}$$

Static solutions for aggregate system, describe all nucleons close together

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

Static solutions for aggregate system, describe all nucleons close together

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

Static solutions for aggregate system, describe all nucleons close together

Coupled NCSMC equations

$$H \Psi^{(A)} = E \Psi^{(A)} \qquad \Psi^{(A)} = \sum_{\lambda} c_{\lambda} |^{(A)} \bigotimes_{\lambda} \lambda \rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} |_{(A-a)}^{\vec{r}} (a), \nu \rangle$$

$$E_{\lambda}^{NCSM} \delta_{\lambda\lambda'} \qquad \begin{pmatrix} \langle A \rangle \otimes |H \hat{A}_{\nu}|_{(a)}^{\vec{r}} (a) \rangle \\ \downarrow \\ \downarrow \\ H_{NCSM} \end{pmatrix} \qquad \downarrow \\ \downarrow \\ H_{NCSM} \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle A \rangle \otimes |A \rangle \\ \downarrow \\ I_{NCSM} \\ g \\ I_{NCSM} \\ I_{$$

Physica Scripta doi:10.1088/0031-8949/91/5/053002 Royal Swedish Academy of Scie 053002 (38pp)

11

mment

ed ab initio approaches to nuclear structure and reactions

Petr Navrátil¹, Sofia Quaglioni², Guillaume Hupin^{3,4}, Carolina Romero-Redondo² and Angelo Calci¹

Novel chiral Hamiltonian and observables in light and medium-mass nuclei

V. Somà,^{1,*} P. Navrátil[®],^{2,†} F. Raimondi,^{3,4,‡} C. Barbieri[®],^{4,§} and T. Duguet^{1,5,∥}

Input for NCSMC calculations: Nuclear forces from chiral Effective Field Theory

- Quite reasonable description of binding energies across the nuclear charts becomes feasible
 - The Hamiltonian fully determined in A=2 and A=3,4 systems
 - Nucleon–nucleon scattering, deuteron properties, ³H and ⁴He binding energy, ³H half life
 - Light nuclei NCSM
 - Medium mass nuclei Self-Consistent Green's Function method

NN N³LO (Entem-Machleidt 2003) 3N N²LO w local/non-local regulator

Recently developed NCSMC capability – charge-exchange reaction calculations

- The first published application ⁷Li+p scattering and radiative capture
 - Wave function ansatz

$$\Psi_{\mathsf{NCSMC}}^{(8)} = \sum_{\lambda} c_{\lambda} \left| {}^{8}\mathrm{Be}, \lambda \right\rangle + \sum_{\nu} \int \mathrm{d}r \gamma_{\nu}(r) \hat{A}_{\nu} \left| {}^{7}\mathrm{Li} + p, \nu \right\rangle + \sum_{\mu} \int \mathrm{d}r \gamma_{\mu}(r) \hat{A}_{\mu} \left| {}^{7}\mathrm{Be} + n, \mu \right\rangle$$

Ab initio investigation of the ⁷Li $(p, e^+e^-)^8$ Be process and the X17 boson

P. Gysbers^{1,2}, P. Navrátil¹, K. Kravvaris³, G. Hupin⁴, S. Quaglioni³

arXiv:2308.13751 – Physical Review C, in press

% TRIUMF

¹²C(n,p)¹²B

In collaboration with Matteo Vorabbi (U Surrey)

Calculations preliminary

14

celerate

ac

Motivation – characterization of single crystal diamond detectors, measurements at n-TOF at CERN

- High-energy neutron detection
 - Single crystal diamond detectors can be used in harsh environments – fusion reactor, have low gamma sensitivity
 - Neutron cross sections on carbon important in general
- (n,p) and (n,d) reactions on carbon measured at n-TOF (neutrontime-of-flight) facility at CERN
 - Measurements at two angles, no information on the final state excitation, E_n up to 26 MeV (24 MeV in CM)
 - For the cross-section determination, theoretical angular distributions needed including for the final nucleus excited states
- Apply NCSMC to ¹²C(n,p)¹²B

- Input chiral NN N⁴LO + 3N_{Inl} interaction SRG evolved
- Basis
 - ¹²C 0⁺ and 2⁺ states (T=0)
 - ¹²B 1⁺ and 2⁺ states (T=1)

- Input chiral NN N⁴LO + 3N_{InI} interaction SRG evolved
- Basis
 - ¹²C 0⁺ and 2⁺ states (T=0)
 - ¹²B 1⁺ and 2⁺ states (T=1)
 - ¹³C
 - 24 negative-parity states J=1/2⁻ 11/2⁻
 - E_x up to 24 MeV
 - 34 positive-parity states J=1/2⁺ 11/2⁺
 - E_x up to 19 MeV

$$\left| \Psi_{\text{NCSMC}}^{(13)} = \sum_{\lambda} c_{\lambda} \left| {}^{13}\text{C} \left| \lambda \right\rangle + \sum_{\nu} \int \mathrm{d}r \gamma_{\nu}(r) \hat{A}_{\nu} \left| {}^{12}\text{C+n} \left| ,\nu \right\rangle + \sum_{\mu} \int \mathrm{d}r \gamma_{\mu}(r) \hat{A}_{\mu} \left| {}^{12}\text{B+p} \left| ,\mu \right\rangle \right. \right. \right|$$

Input - chiral NN N⁴LO + 3N_{InI} interaction – SRG evolved

Basis

- ¹²C 0⁺ and 2⁺ states (T=0)
- ¹²B 1⁺ and 2⁺ states (T=1)
- ¹³C
 - 24 negative-parity states J=1/2⁻ 11/2⁻
 - E_x up to 24 MeV
 - 34 positive-parity states J=1/2⁺ 11/2⁺
 - E_x up to 19 MeV

Very high density of states \rightarrow difficult to converge by Lanczos iterations (>800, dim 186 million at N_{max}=7)

$$\Psi_{\rm NCSMC}^{\ (13)} = \sum_{\lambda} c_{\lambda} \left| \begin{array}{c} {}^{\rm \tiny 13C} \end{array} \right. \lambda \right\rangle + \sum_{\nu} \int {\rm d}r \gamma_{\nu}(r) \hat{A}_{\nu} \left| \begin{array}{c} {}^{\rm \tiny 12C+n} \end{array} \right. , \nu \right\rangle + \sum_{\mu} \int {\rm d}r \gamma_{\mu}(r) \hat{A}_{\mu} \left| \begin{array}{c} {}^{\rm \tiny 12B+p} \end{array} \right. , \mu \right\rangle$$

- Input chiral NN N⁴LO + 3N_{InI} interaction SRG evolved
- Ab initio results N_{max}=7 (N_{max}=5 close to N_{max}=7)
 - Three bound states vs. four in experiment:
 - E(1/2⁻) = -4.98 MeV vs. Expt. -4.95 MeV
 - E(1/2⁺)= -0.77 MeV vs. Expt. -1.86 MeV
 - E(3/2⁻) = -1.81 MeV vs. Expt. -1.26 MeV
 - E(5/2⁺)= +0.33 MeV vs. Expt. -1.09 MeV

- Input chiral NN N⁴LO + 3N_{Inl} interaction SRG evolved
- Ab initio results N_{max}=7 (N_{max}=5 close to N_{max}=7)
 - Three bound states vs. four in experiment:
 - E(1/2⁻) = -4.98 MeV vs. Expt. -4.95 MeV
 - E(1/2⁺)= -0.77 MeV vs. Expt. -1.86 MeV
 - E(3/2⁻) = -1.81 MeV vs. Expt. -1.26 MeV
 - E(5/2⁺)= +0.33 MeV vs. Expt. -1.09 MeV
 - Resonances

- Input chiral NN N⁴LO + 3N_{Inl} interaction SRG evolved
- NCSMC-pheno results N_{max}=7
 - Three bound states vs. four in experiment:
 - E(1/2⁻) = -4.95 MeV vs. Expt. -4.95 MeV
 - E(1/2⁺)= -1.86 MeV vs. Expt. -1.86 MeV
 - E(3/2⁻) = -1.26 MeV vs. Expt. -1.26 MeV
 - E(5/2⁺)= -1.09 MeV vs. Expt. -1.09 MeV
 - Resonances

Phase shift comparison

Conclusions

- Ab initio nuclear theory
 - Makes connections between the low-energy QCD and many-nucleon systems
 - Applicable to nuclear structure, reactions including those relevant for astrophysics, electroweak processes, tests of fundamental symmetries
 - Very recently reach extended to heavy nuclei
- Applications of *ab initio* no-core shell model with continuum to nuclear structure and reactions
 - ¹²C(n,p)¹²B charge-exchange reaction
 - High density of states in the compound nucleus ¹³C
 - Regime where typically R-matrix analysis applied
 - Work in progress
 - Fine-tuning the resonance adjustments in the NCSMC-pheno approach
 - More ¹²B excited states needs to be included

In synergy with experiments, ab initio nuclear theory is the right approach to understand low-energy properties of atomic nuclei

% TRIUMF

Thank you! Merci! Danke!

Collaborators:

Matteo Vorabbi (U Surrey) Sofia Quaglioni (LLNL) Kostas Kravvaris (LLNL) Guillaume Hupin (IJCLab)

33

celerat

ac