The ²³⁹Pu neutron capture and fission cross-section measurements at n_TOF, CERN

A. Sanchez-Caballero¹, V. Alcayne¹, J. Andrzejewski², D. Cano-Ott¹, J. García-Pérez¹, E. Gónzalez-Romero¹, J. Heyse³, T. Martínez¹, E. Mendoza¹, J. Perkowski², J. Plaza del Olmo¹, A. Plompen³, P. Schillebeeckx³, G. Sibbens³

¹CIEMAT, Spain ²University of Lodz, Poland ³JRC-Geel, Belgium

IRC

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

FRI

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

ARIE

erc

Contents

- 1. Context and motivation of the measurement.
- 2. ²³⁹Pu measurement at n_TOF. Experimental setup.
- 3. Data analysis.
- 4. Experimental yields.
- 5. Summary.

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Motivation and experimental context

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

CNR*24 – Measurements II Vienna, 8th - 12th of July

1.1 Motivation and context

More accurate ²³⁹Pu capture and fission cross-section data are required for:

- Design of advanced nuclear devices (Gen IV reactors).
- Optimization of nuclear waste management strategies of current reactors.
- Operation of fast and thermal reactors that use MOX fuels.

Nuclear data evaluations for ²³⁹Pu(n,g) and (n,f)

- Main evaluations for capture cross-sections show **significant discrepancies**.
- **Only two existing measurements** for ²³⁹Pu(n,g) cross-section exist, due to the intrinsic complexity of measuring a fissile sample.

²³⁹Pu capture and fission cross-sections are included in the **NEA/OECD High Priority Request List.**

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

²³⁹Pu measurement at n_TOF

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

CNR*24 – Measurements II Vienna, 8th - 12th of July

2. ²³⁹Pu measurement at n_TOF

Objectives

- Measuring the neutron capture-to-fission ratio (alpha-ratio), the fission and the capture cross sections of ²³⁹Pu at the n_TOF EAR-1.
- To provide an overall uncertainty ~3% in the range from thermal energies to 10 keV.
- To provide an **absolute alpha-ratio**, thanks to the accurate determination of the fission and capture detection efficiencies (experience from previous measurements, e.g. ²³⁵U(n,g)).

Why at n_TOF?

• A **185 m flight path** (**10 times larger** than in previous measurements) will provide **better energy resolution** to improve significantly the resonance analysis.

2.1 Overview of the experiment and samples

- The experimental campaign took place in the last quarter of 2022, with 2 months of beam time (~5.10¹⁸ protons).
- The campaign was divided in two different configurations:

The ²³⁹Pu targets

The PuO₂ (99.90% purity) 10 thin samples (~1 mg each) and the thick sample (~100 mg) were produced, deposited and encapsulated by JRC-Geel+SCK·CEN.

GOBIERNO DE ESPAÑA

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

2.2 Main detectors

Fast fission detector

- To perform **fission tagging** with the TAC and to **measure fission** cross-section.
- Housing of 10 parallel targets of PuO₂ deposited in 10 µm aluminum backing.
- Fast pre-amplifiers.
- **Filled with Ar+CF₄ gas**. Efficiency of ~90%.

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Total Absorption Calorimeter (TAC)

- To detect capture and fission γ-rays
- Composed of **40 BaF₂ crystals**.
- Fast response, high efficiency and low neutron sensitivity.

• Mounting of the fission chamber inside the TAC. The targets in the chamber are placed around the center of the TAC.

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

CNR*24 – Measurements II Vienna, 8th - 12th of July

• Placement of the Li-doped polyethylene neutron absorber to reduce the number of neutrons reaching the BaF₂ crystals.

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

• Final setup after closing the neutron absorber and before closing the TAC.

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

CNR*24 – Measurements II Vienna, 8th - 12th of July

Experimental setup (TAC closed)

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Data analysis

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

3.1 New dedicated Pulse Shape Analysis routine

Signal reconstruction examples with the new dedicated Pulse Shape Analysis routine.

Fission Chamber

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

3.1 New dedicated Pulse Shape Analysis routine

Signal reconstruction examples with the new dedicated Pulse Shape Analysis routine.

TAC

Energéticas, Medioambientales y Tecnológicas

Y UNIVERSIDADES

3.2 Amplitude/E_{sum} spectra

FFD

- Amplitude spectra in the fast fission detector.
- FF = Fission Fragment
- Vertical line: selected *α*-FF threshold.
- 1 FF per >2000 alphas.

TAC

- Sum energy spectra with the different **background** components, for the first resonance at 0.3 eV.
- MC = Monte Carlo simulation of 239 Pu(n, γ).

- E. Mendoza et al. NuDEX: a new nuclear γ-ray cascade generator. EPJ Web of Conferences 239, 17006 (2020)
- E. Mendoza et al. Study of photon strength functions of ²⁴¹Pu and ²⁴⁵Cm from neutron capture measurements. EPJ Web of Conferences 239, 01015 (2020)

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

3.3 Coincidence analysis

- Time coincidences between TAC events and fission chamber (FICH) signals in the energy region close to the 0.3 eV ²³⁹Pu resonance.
- Coincidence window (-20,+20) ns.

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Experimental yields

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

4.1 ²³⁹Pu(n,f) yield compared to evaluations

Fission yield **normalized** to the recommended value for fissile targets in: *Durán, I., Capote, R., & Cabanelas, P. (2024).* Normalization of ToF (n, f) Measurements in Fissile Targets: Microscopic cross-section integrals. *Nuclear Data Sheets, 193, 95-104.*

Ratios are calculated using the INDEN evaluation published in July 2023.

https://www-nds.iaea.org/INDEN/

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

4.1 ²³⁹Pu(n,f) yield compared to evaluations

4.3 ²³⁹Pu(n, γ) yield compared to evaluations

Capture in FC setup has been normalized using the ²³⁹Pu(n,f) yield normalization.

Only statistical

GOBIERNO

DE ESPAÑA

DE CIENCIA, INNOVACIÓN

Y UNIVERSIDADES

Centro de Investigaciones

Energéticas, Medioambientales

y Tecnológicas

21

Vienna, 8th - 12th of July

4.3 ²³⁹Pu(n, γ) yield compared to evaluations

Capture in FC setup has been normalized using the ²³⁹Pu(n,f) yield normalization.

Centro de Investigaciones

Energéticas, Medioambientales

y Tecnológicas

GOBIERNO

DE ESPAÑA

MINISTERIO

Y UNIVERSIDADES

DE CIENCIA, INNOVACIÓN

Vienna, 8th - 12th of July

4.3 ²³⁹Pu(n, γ) yield compared to evaluations

Capture in TS setup.

y Tecnológicas

Summary

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

CNR*24 – Measurements II Vienna, 8th - 12th of July

5. Summary

- ²³⁹Pu experimental campaign at n_TOF successfully accomplished. Measured neutron capture and fission cross-sections and other auxiliary measurements.
- Good performance of the new fission chamber and high quality of the produced radioactive samples.
- ²³⁹Pu(n,f) cross-section measured between thermal and 20 MeV neutron energies. Excellent agreement with evaluations; differences within a 2% at 1 bin per decade.
- ²³⁹Pu(n,γ) cross-section analysis is quite advanced. Final results expected soon.
- A paper with the fission results is being prepared, and will be submitted soon.
- For capture, publications are expected for next year.
- The new n_TOF ²³⁹Pu data will be submitted to the EXFOR database.

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Acknowledgments

• This project has received funding from the **Euratom** research and training programme 2011-2018 under grant agreement No 847595 (**ARIEL**)

Accelerator and Research reactor Infrastructures for Education and Learning

 This activity is part of the scientific program approved by the European Commission H2020 Supplying Accurate Nuclear Data for energy and non-energy Applications – SANDA project (WP2, Task 2).

• 2021-1-RD EUFRAT-GELINA project funding for the stay at JRC-Geel.

EUROPEAN COMMISSION JOINT RESEARCH CENTRE

Directorate G - Nuclear Safety and Security Standards for Nuclear Safety, Security and Safeguards

• Spanish national projects PGC2018-096717-B-C21, PID2021-123100NB-I00 and PDC2021-120828-I00.

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

THANK YOU!

Extra slides

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

CNR*24 – Measurements II Vienna, 8th - 12th of July

1.2 Previous measurements

Previous ²³⁹Pu capture measurements with high energy resolution in EXFOR

- Gwin et al. (1971). For neutron energies between 0.02 eV and 30 keV.
- **Mosby et al. (2014)** at LANSCE (Los Alamos, USA) in the neutron energy range from 10 eV to 1.3 MeV. Only the shape of the cross-section was measured (normalized to ENDF/B-VII.0 cross-section).

4.3 ²³⁹Pu(n,γ) yield compared to evaluations

Capture comparison FC vs TS setup.

4.3 ²³⁹Pu(n,γ) yield compared to evaluations

Capture in TS setup.

Fission Chamber configuration

Preliminary results: fission yield compared with evaluated libraries

Max. E_n in fission yield

Inspecting the data buffers, we can estimate the width of the gamma flash, thus obtaining the maximum valid neutron energy for the fission yield that we could potentially reach.

Plot taken from file run114394_0_s1.raw.finished. The Tflash has been obtained from Baf2 #18 from the same pulse. TOFD = 185.59 m.

According to this, we could measure fission without being affected by the gammaflash **up to ~3 MeV**.

GOBIERNO

DE ESPAÑA

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Fission Chamber configuration

Preliminary results: background contributions

• TAC neutron energy spectra with the standard cuts for a capture measurements.

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Targets description

Number of electronic output from preamplifiers	Target position in the FC chamber	Pu-239 samples			
		TP number	Activity [µg/cm ²]	Mass [µg]	Areal density [μg/cm²]
6	1	2020-006-15	2.24E+06	975	310
1	2	2020-006-02	2.22E+06	965	307
7	3	2020-006-04	2.20E+06	959	305
2	4	2020-006-06	2.09E+06	911	290
8	5	2020-006-14	2.81E+05	122	39
3	6	2020-006-07	1.94E+06	844	268
9	7	2020-006-08	2.19E+06	953	303
4	8	2020-006-10	2.11E+06	920	293
10	9	2020-006-12	2.09E+06	912	290
5	10	2020-006-13	2.25E+06	982	312

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

