

The 7th international workshop on Compound-Nuclear Reactions and Related Topics (CNR*24) 8 - 12 July, 2024

Progress on Nuclear Reaction Study in CENDL

XU Ruirui

Introduction

Nuclear Reaction

Perspective

Nuclear Reaction Data

Platform for Chinese Experiments Platform for Theoretical Models Nuclear Data Improvement Treatment for Experimental data Processing and V&V for PD

From fundamental particles to applications

Introduction

Pressurized Water Reactor(PWR)

Space Reactor

Fusion

I. General Information of CNDC 1.1 About CNDC

Nuclear data study started in 60's last century by measurements with the first reactor and cyclotron in CIAE, China Nuclear Data Center (CNDC) was established in 1975 and joined the nuclear data activities of IAEA as the national nuclear data center of China since 1984. As a window, CNDC has been open to the world since 1978. and CNDC has established a good cooperative relationship with the IAEA, OECD/NEA, and major nuclear data centers and institutions in the world.

The main task of CNDC:

- ✓ The management of domestic nuclear data activities.
- \checkmark The nuclear data evaluations, libraries and relevant methodology studies.
- Nuclear data measurements and methodology studies
- ✓ The exchange of nuclear data activities with IAEA, foreign nuclear data centers and agencies.
- \checkmark The services for domestic and foreign nuclear data application users.

1.2 Mainly tasks of CNDC in 2023/2024:

- ✓ New Five Years Plan (2021-2025) for nuclear data (CENDL Project).
- Data evaluation for next CENDL version and sub-libraries
- ✓ Methodological studies of nuclear data evaluation(incl. theoretical and experimental for fission process...).
- ✓ Nuclear data measurements and related methodological studies.(Mr.Ruan)
- \checkmark The compilations for EXFOR.
- ✓ Nuclear data services.

Introduction

The 1st reactor and cyclotron in China

Introduction

Nuclei	IucleiEdited ~ 1979, 16CENDL-1, 1986, 36		CENDL-2 1991, 66	CENDL-3.1 2010, 240	CENDL-3.2 2020, 272
Few body	^{1,2,3} H, ^{3,4} He	^{1,2,3} H, ^{3,4} He	^{1,2,3} H, ^{3,4} He	^{1,2,3} H, ^{3,4} He	nn-1, ^{1,2,3} H, ^{3,4} He
Light	^{6, 7} Li, ⁹ Be	^{6,7} Li, ⁹ Be, ^{10,11} B, ¹⁴ N, ¹⁶ O, ¹⁹ F	^{6,7} Li, ⁹ Be, ^{10,11} B, ¹⁴ N, ¹⁶ O, ¹⁹ F	^{6,7} Li, ⁹ Be, ^{10,11} B, ¹² C, ¹⁴ N, ¹⁶ O, ¹⁹ F	Same
Medium heavy	⁰ Pb, ⁰ W, ⁰ Al, ⁰ Fe ¹⁹ nuclei ²³ Na, ⁰ Mg, ²⁷ Al, ⁰ Si, ⁰ V, ⁰ Cr, ⁰ Fe, ⁰ Ni, ⁰ Cu, ⁰ Zn, ⁰ Zr, ⁹³ Nb, ⁰ Mo, ⁰ Sn, ⁰ Hf, ¹⁸¹ Ta, ⁰ W, ¹⁹⁷ Au, ⁰ Pb		45 nuclei ²³ Na, ⁰ Mg, ²⁷ Al, ⁰ Si, ³¹ P, ⁰ S, ⁰ K, ⁰ Ca, ⁰ Ti ⁰ V, ^{0,50,52,53,54,55} Cr, ⁵⁵ Mn ^{0,54,56,57,58} Fe, ⁵⁹ Co, ⁰ Ni, ^{0,63,65} Cu, ⁰ Zn, ⁰ Zr, ⁹³ Nb, ⁰ Mo, ^{0,107,109} Ag, ⁰ Cd, ⁰ In, ⁰ Sn, ⁰ Sb, ⁰ Lu, ⁰ Hf, ¹⁸¹ Ta, ⁰ W, ¹⁹⁷ Au, ⁰ Hg, ⁰ Tl, ⁰ Pb	192 nuclei ²³ Na~ ²⁰⁸ Pb	223 nuclei ²³ Na~ ²⁰⁸ Pb
Actinides	Actinides 235,238U,239,240P 235, 238U, 239,240Pu		8 nuclei ^{235, 238} U, ²³⁷ Np, ^{239,240} Pu, ²⁴¹ Am, ²⁴⁹ Bk, ²⁴⁹ Cf	34 nuclei ²³² Th~ ²⁴⁹ Cf	34 nuclei ²³² Th~ ²⁴⁹ C
	中国评作 第 子能科学研究時 atte of Atomic Energy	скоского А КВ Д ИВ ГР Б-СКС СКОСКОВИ СССССССССССССССССССССССССССССССССССС	M. J. So, No. 4 Job 1995 BP Bed Columns 14 (00) (01) DD. BLIES(spind21110000 SOUTH DD. BLIES(spind21010000 SOUTH DD. BLIES(spind21010000 SOUTH DD. BLIES(spind21000000 SOUTH DD. BLIES(spind21000000000000000000000000000000000000	NATERN REINTE IND INCREMENTE INI 334-341 (2006) Colculation and Analysis of the Complete Set of Neutron Data for 44,47,48,47,93,0x9Ti in the Energy Region 0.3 to 20 MeV Rains Xux ⁴ Haicheng Wa, Zhigang Gu, Yahu Hau, and Tangin Lia Chaia Initiate of Josse Energy 70 Star 275-471, Reijen (2021), Chaia Barrier Xux ⁴ Haicheng Wa, Zhigang Gu, Yahu Hau, and Tangin Lia Chaia Initiate of Josse Energy 70 Star 275-471, Reijen (2021), Chaia Barrier Xux ⁴ Haicheng Wa, Zhigang Gu, Yahu Hau, and Tangin Lia Chaia Initiate of Associety 70 Star 275-471, Reijen (2021), Chaia Barrier Xu Hanni Ferrer, 2011, Star 2011, Star 2011, Star Method. Hanni Ferrer, Star of optical starkation of star 264-2643. The star Initiate Method Initiate Star and the star star star for optical starkation of star of the observation of the observati	<text><text><text><text><text><text><text></text></text></text></text></text></text></text>

Introduction

Nuclear Reaction

Perspective

Nuclear Reaction Data

Platform for Chinese Experiments Platform for Theoretical Models Nuclear Data Improvement Treatment for Experimental data Processing and V&V for PD

The New Evaluation Project & Data in CENDL-4.0

Nuclear Reactions

Nuclear	CENDL-4.0-v1 共 A=410, Z=86
Light Elements (A=17) (Z=10)	¹ n, ^{1,2,3} H, ^{3,4} He, ^{6,7} Li, ⁹ Be, ^{10,11} B, ^{12,13} C, ^{14,15} N, ¹⁶ O, ¹⁹ F
Fission Products & Medium Elements (A=359) (Z=69)	^{22,23} Na, ^{24,25,26} Mg, ²⁷ Al, ^{28,29,30} Si, ³¹ P, ^{32,33,34,36} S, ^{35,37} Cl, ^{39,40,41} K, ^{40,42,43,44,46,48} Ca, ^{46,47,48,49,50} Ti, ^{50,51} V, ^{50,52,53,54} Cr, ⁵⁵ Mn, ^{54,56,57,58} Fe, ⁵⁹ Co, ^{58,59,60,61,62,64} Ni, ^{64,65,66,67,68,70} Zn, ^{69,71} Ga, ^{70,71,72,73,74,75,76,77,78} Ge, ^{74,75} As, ^{74,76,77,78,79,80,82} Se, ^{79,81} Br, ^{78,80,81,82,83,84,85,86,87} Rb, ^{84,86,87,88,89,90} Sr, ^{89,90,91} Y, ^{90,91,92,93,94,95,96} Zr, ^{93,94,95,96} Nb, ^{92,93,94,95,96,97,98,99,100} Mo, ^{99,104} Tc, ^{96,98,99,100,101,102,103,104,105,106} Ru, ^{103,105} Rh, ^{102,104,105,106,107,108,110} Pd, ^{107,109,111} Ag, ^{106,108,109,110,111,112,113,114,115,116} Cd, ^{113,115} In, ^{112,113,114,115,116} Cd, ^{113,115} In, ^{112,113,114,115,116,117,118,119,120,122,123,124,125,126,127} Sb, ^{120,122,123,124,125,126,127} Cb, ^{120,122,123,124,125,126,127} Sb, ^{120,122,123,124,125,126,127} Cb, ^{120,122,133,134,135,136,137} Cs, ^{130,132,133,134,135,136,137,138,139,140} Ba, ^{138,139,140} La, ^{136,138,139,140,141,142,143,144} Ce, ^{141,142,143,145} Pr, ^{142,143,144,145,146,147,148,149,150} Nd, ^{147,148,148m,149,150,151} Pm, ^{144,145,146,147,148,149,150,151,152,153,154,155,156,157} Eu, ^{152,153,154,155,156,157} Fb, ^{175,176,177} Lu, ^{174,176,177,178,179,180,181} Hf, ^{180,181,182} Ta, ^{180,182,183,184,186,187,188} W, ^{185,187} Re, ^{191,193} Ir, ¹⁹⁷ Au, ^{196,198,199,200,201,202,204} Hg, ^{203,205} Tl, ^{204,206,207,208} Pb, ²⁰⁹ Bi
Actinides (A=34) (Z=7)	²³² Th, ^{232,233,234,235,236,237,238,239,240,241} U, ^{236,237,238,239} Np, ^{236,237,238,239,240,241,242,243,244,245,246} Pu, ^{240,241,242,242m,243,244} Am, ²⁴⁹ Bk, ²⁴⁹ Cf

~ neutron data of 30 nuclei are being improved based on the new experimental data light elements: ⁴He, ⁶Li, ^{9,10,11}B, ^{12,13,14,15}C, ^{14,15}N Medium elements: ²⁷Al, ^{50,51}V, ⁵²Cr, ^{54, 56-58}Fe, ^{69, 71}Ga, ⁹⁵Mo, ^{204, 206-208}Pb Actinides: ^{235, 238}U, ^{239, 240, 241}Pu

1. Platform of Chinese Experimental Facilities (partly) For Nuclear Data — Neutron, Photon, proton beams

Nuclear Reactions

Nuclear Reactions

1. The platform of Chinese Experimental Facilities

For Nuclear Data — Neutron beams

· 中子核数据测量的三要素: 中子源、探测器与实验方法

@ 8-14MeV Double differential Cross Sections

能量	样品
14 MeV 附近	C, ²³⁸ U, D, ²⁰⁹ Bi, ^{6,7} Li, Zr, Al
6 MeV <mark>附近</mark>	Be
8 MeV <mark>附近</mark>	^{6,7} Li, Fe, Be, D, Ga
10 MeV 附近	^{6,7} Li, Be, V, ²³⁸ U, ²⁰⁹ Bi, Fe, C
20-40 MeV	Be, C, ²⁰⁹ Bi

@ (n,2n), (n,p) reaction cross sections

²³ Na(n,2n) ²² Na	²⁴ Mg(n,p) ²⁴ Na	27AI(n, a)24Na	45Sc(n,2n)44g.Sc	45Sc(n,2n)44mSc	45Sc(n,2n)44m+gSc
⁴⁶ Ti(n,p) ⁴⁶ Sc	47Ti(n,p)47Sc	⁴⁸ Ti(n,p) ⁴⁶ Sc	⁵¹ V(n,a) ⁴⁸ Sc	55Mn(n,2n)54Mn	⁵⁴ Fe(n,p) ⁵⁴ Mn
⁵⁴ Fe(n,a) ⁵¹ Cr	⁵⁶ Fe(n,p) ⁵⁵ Mn	59Co(n,2n)58Co	⁵⁹ Co(n,p) ⁵⁹ Fe	59Co(n,a)56Mn	58Ni(n,2n)57Ni
58Ni(n,p)58Co	⁵⁸ Ni(n,x) ⁵⁷ Co	⁶⁰ Ni(n,p) ⁶⁰ Co	⁶² Ni(n,a) ⁵⁹ Co	⁶² Ni(n, a) ⁵⁹ Fe	⁶³ Cu(n,a) ⁶⁰ Co
66Zn(n,2n)65Zn	67Zn(n,p)67Cu	⁷⁰ Zn(n,2n) ^{69m} Zn	⁷¹ Ga(n,r) ⁷² Ga	⁸⁵ Rb(n,2n) ^{84m} Rb	85Rb(n,2n)84m+9Rb
*5Rb(n,p)*5mKr	⁸⁵ Rb(n, a) ⁸² Br	87Rb(n,2n)86Rb	^{\$7} Rb(n,p) ^{\$7} Kr	^{#9} Y(n,2n) ⁸⁸ Y	90Zr(n,2n)89Zr
Zr(n,2n)Zr	^{se} Zr(n,2n) ^{s5} Zr	⁹² Mo(n,p) ⁹² Nb	⁹⁸ Mo(n,r) ⁹⁹ Mo	^{\$3} Nb(n,2n) ^{92m} Nb	⁹³ Nb(n,a) ^{90m} Y
109Ag(n,2n)108mAg	¹¹³ In(n,2n) ^{112m} In	¹¹³ in(n,n') ^{113m} in	¹¹⁵ ln(n,2n) ^{114m} ln	¹¹⁵ ln(n,n') ^{115m} ln	¹¹⁶ in(n,r) ^{116m} in
115In(n,p)115Cd	115In(n,a)112Ag	¹²⁷ l(n,2n) ¹²⁶ l	¹²⁴ Xe(n,2n) ¹²³ Xe	¹³² Ba(n,2n) ¹³¹ Ba	¹³⁴ Ba(n,2n) ^{133m} Ba
¹³⁴ Ba(n,2n)1 ^{33m+g} Ba	¹³⁴ Ba(n,p) ^{134m+g} Cs	¹³⁴ Ba(n,a) ^{131m} Xe	¹³⁷ Ba(n,p) ¹³⁷ Cs	¹³⁶ Ba(n,p) ¹³⁶ Cs	¹³⁸ Ba(n,a) ¹³⁵ Xe
¹³⁶ Ce(n,2n) ¹³⁵ Ce	¹³⁸ Ce(n,2n) ^{137m} Ce	¹⁴⁰ Ce(n,2n) ¹³⁹ Ce	140Ce(n,p)140La	¹⁴² Ce(n,2n) ¹⁴¹ Ce	¹⁵¹ Eu(n,2n) ^{150m} Eu
¹⁵¹ Eu(n,r) ^{152m} Eu	¹⁵¹ Eu(n,r) ^{152g} Eu	¹⁵³ Eu(n,2n) ^{152g} Eu	¹⁵³ Eu(n,r) ¹⁵⁴ Eu	¹⁵⁹ Tb(n,2n) ¹⁵⁸ Tb	¹⁵⁹ Tb(n,r) ¹⁶⁰ Tb
¹⁶⁵ Ho(n,r) ^{166m} Ho	¹⁶⁹ Tm(n,2n) ^{168m} Tm	¹⁶⁹ Tm(n,3n) ¹⁶⁷ Tm	¹⁶⁹ Tm(n,r) ¹⁷⁰ Tm	¹⁷⁵ Lu(n,2n) ^{174m+g} Lu	¹⁷⁶ Hf(n,2n) ¹⁷⁵ Hf
¹⁸⁰ Hf(n,r) ¹⁸¹ Hf	¹⁷⁹ Hf(n,2n) ^{178m2} Hf	¹⁸⁰ Hf(n,2n) ^{179m2} Hf	¹⁸¹ Ta(n,2n) ^{180m} Ta	¹⁸¹ Ta(n,p) ¹⁸¹ Hf	¹⁸² W(n,n'a) ^{178m2} Hf
¹⁸⁵ Re(n,2n) ^{184m} Re	¹⁸⁵ Re(n,2n) ^{184m+g} Re	¹⁸⁷ Re(n,2n) ^{186g} Re	¹⁸⁷ Re(n,2n) ^{186m} Re	¹⁹³ lr(n,2n) ^{192m2} lr	Pt(n,x) ^{195m} Pt
198Pt(n,2n)197Pt	¹⁹⁷ Au(n.2n) ¹⁹⁶ Au	¹⁹⁷ Au(n,3n) ¹⁹⁵ Au	204Pb(n,2n)203Pb	69Ga(n,2n)68Ga	241Am(n,γ)240Am
239Pu(n,2n)238Pu					

Introduction

Nuclear Reaction

Perspective

Nuclear Reaction Data

Platform for Chinese Experiments Platform for Theoretical Models Nuclear Data Improvement Treatment for Experimental data Processing and V&V for PD

2. Platform of Chinese Theoretical Model for nuclear reaction For Nuclear Data — Neutron and Photon beams

Nuclear Reactions

Chinese Nuclear Reaction Codes:

<u>1. UNF: UNiFed function</u>

- Incident: Neutron, proton, photon
- ➤ Target: light, medium heavy, actinides

➢ Energy: ~ 20MeV

J.S. Zhang, Nucl. Sci. Eng. 142, 207, 2002 J.S. Zhang, Nucl. Sci. Eng. 114, 55, 1993

2. MEND: Medium Energy Nuclear Data

 Incident: neutron, proton, deuteron, triton, alpha, photon
 Target: medium heavy, actinides
 Energy: ~ 200MeV

> C.H. Cai, Nucl. Sci. Eng. 153, 93, 2006 C.H. Cai, Chin. J. Comp. Phys. 20, 279, 2003

In memory of Eric Bauge for JLMB models Phys. Rev. C 58, 1118, 1998

2.1 Nuclear optical potentials: bridge the nuclear structure and nuclear reactions

Nuclear Reactions

2.2 Improving nuclear data library of light nucleus

The n+d systems are calculated by solving the following Faddeev-AGS equation: $U = Pv_1 + Pv_1G_1U$,

where U, P, v_1 and G_1 are the transition operator, the permutation operator, the channel interaction, and the channel resolvent, respectively. The Faddeev equation is solved with the wave-packet method described in *O.A. Rubtsova et al., Ann. Phys. 360, 613 (2015).*

NN interactions used: For elastic scattering and total reaction cross sections: Nijmegen potential: nijmI. For breakup double-differential cross sections: MT I-III s-wave separable potential

$$A_{bu}^{\Gamma\alpha\beta}(\theta) = \frac{4\pi m}{3\sqrt{3}} q_0 K^4 e^{\frac{i\pi}{4}T^{\Gamma\alpha\beta}}(p,q), \ \theta = \tan^{-1}\left(\frac{\sqrt{3}q}{2p}\right)$$

$$T^{\Gamma\alpha\beta}(p,q) \approx e^{i\delta(p_k)} \frac{\mathbb{T}_{1j_0,kj}^{\Gamma\alpha\beta}}{p_k q_j q_0} \qquad \qquad \mathbb{T}_{1j_0,kj}^{\Gamma\alpha\beta} \equiv \frac{\left\langle Z_{1j_0}^{\Gamma\alpha\beta} \big| \mathfrak{U}^{\Gamma} \big| Z_{kj}^{\Gamma\alpha\beta} \right\rangle}{\sqrt{d_{j_0}d_k d_j}}, \quad \begin{cases} q_0 \in \mathfrak{D}_{j_0} \\ q \in \mathfrak{D}_j \\ p \in \Delta_k^p \end{cases}$$

2.2 Improving nuclear data library of light nucleus

- Neutron induced nuclear reaction dataset for light nucleus are incomplete, only including ^{3,4}He, ^{6,7}Li, ⁹Be, ^{10,11}B, ¹²C, ¹⁴N, ¹⁶O, ¹⁹F in CENDL-3.2.
- Key steps and technologies:
 - Theoretical models beyond R matrix
 - Consistent evaluation both experimental and theoretical results for the fast neutron energy
 - Nuclear data processing research

Applying Statistical Theory of Light Nucleus reactions to predict complete nuclear reaction data, key considerations:

- Must include special but not negligible channels, for example ⁶Li(n, ddt) with tens of mb cross section
- The number of open levels increase significantly when induced neutron energy as large as 30 MeV
- Providing both cross-sections and energy-angular double differential spectra data
- Understanding reaction mechanism of pre-equilibrium emission and complex particle formation process

Nuclear Reactions

Nuclear Reactions

Open channels

- 01 Introduction
- 02 Nuclear Reaction
- 03 Perspective

Nuclear Reaction Data

Platform for Chinese Experiments
Platform for Theoretical Models
Nuclear Data Improvement
Treatment for Experimental data
Processing and V&V for PD

3.1. Resolved Resonance Energy Region – ResIntegralPeak.py

How to quickly evaluate and identify the resonance peak of different libs ?

2. For smaller peaks, where the minimum cross-section is greater than half of the maximum value, take the area between two minima points as ΔE .

The resonance integral is defined as

$$RI = \int_{\Delta E} \frac{\sigma_{TOT}(E)}{E} d(E)$$
 (b)

The relative error is calculated as $s = \frac{RI_{other Eval.} - RI_{ENDF/B-VIII}}{RI_{ENDF/B-VIII}} * 100(\%)$

In the resolved resonance region of ²³⁸U in ENDF/B-VIII, there are 926 resolved resonances for a given neutron orbital angular momentum. More than 3k resonance energies in (2,151). According to the total cross-section data from IAEA ENDF database, 1650 peaks are found automatically in this region. Some of them are "false peaks" due to calculation, which has been removed from the comparisons.

The relative error of resonance integral at each peak between JENDL-5 and ENDF/B-VIII The relative error of resonance integral at each peak between JEFF-3.3 and ENDF/B-VIII

For JENDL-5 and JEFF-3.3, the relative error of resonance integral in each peak is small, and the resonance peak positions have no significant deviations. However, as energy increases, the deviation between JENDL-5 and ENDF/B-VIII gradually increases, peaked at around 1%.

The relative error of resonance integral at each peak between BROND-3.1 and ENDF/B-VIII The relative error of resonance integral at each peak between CENDL-3.2 and ENDF/B-VIII

BROND-3.1 and CENDL-3.2 exhibit significant deviations from ENDF/B-VIII below 1.2 keV. These deviations come from both peak values and peak positions. For CENDL-3.2, the deviations near 10 keV and in 19~20 keV are primarily due to peak values, where the peak positions are almost the same.

3.2. Resonance Energy Region - AI

• Coupled Phase Shift Deep Neural Network(CPSDNN) Approach for Studying Resonance Cross Sections of ²³⁵U(n,f) Reaction

The neural network structure diagram of CPSDNN. Each $F_m(x)$ (m = 0, 1, ..., M) represents a neural network. The T(x) represents the training process of neural network.

The black points are the evaluated data derived from ENDF/B-VIII.0. The green and the blue lines are the predicted results of DNNs with the tanh and relu activation functions, respectively.

The red line is the predicted results of CPSDNN.

K. Xu, X.J. Sun*, R.R. Xu*, et al. Phys. Lett. B 855 (2024) 139825

Nuclear Reactions

3.3. Real application of Unified Monte Carlo (UMC-B) for n+48 TiNuclear Reactions

UMC-B:

Sk

口核集

For each random set $\{\sigma_i\}$ we calculate

- 01 Introduction
- 02 Nuclear Reaction
- 03 Perspective

Nuclear Reaction Data

Platform for Chinese ExperimentsPlatform for Theoretical ModelsNuclear Data ImprovementPreparation for Experimental dataProcessing and V&V for PD

NDPlot by Prof. Jin Yongli is an efficient nuclear data evaluation tool, not only for plotting, but also Integrated application software.

Powerful Batch Plotting Quick Choice Menu Ratios of cross sections Fission yield, covariance... ...

Screenshot

Nuclear Reactions

X4table: A software for extracting key information from original EXFOR documents

文件 保存 编辑 帮助 X4文件路径 F:/2023/word/x4t able/get/n_13-A1-27_p.txt ENTRY YEAR AUTHOR INSTITUTE REFERENCE FACILITY SOURCE METHOD DETECTOR 10088 1970 LHusain 1USAARK J,PR/C,1,1233,1970 CVW D-T ACTIV GELI 26-FE-56(N 10186 1971 G.N.Salaita 1USAAKK J,PR/C,1,1233,1970 CVW D-T ACTIV GELI 26-FE-56(N 10186 1971 G.N.Salaita 1USAAKK J,PR/C,1,1233,1970 CVW D-T ACTIV GELI 26-FE-56(N 10186 1971 G.N.Salaita 1USAAK J,PR/A,170,193,1971 VDG D-T ACTIV GELI - 10238 1975 D.L.Smith 1USAAK J,NSE,30,39,196710 VDG - ACTIV PROPC 13-AL-27(N 10417 1967 R.A.Sigg 1USAAKK T,SIGG,1976 CCW D-T ACTIV GELI 13-AL-27(N	MONITOR ENERGY (P)25-MN-56,,SIG 13 14.8 14.8 14.8 1,F),,SIG 92-U-238(N, 2.805~9.96	Y POINTS
X4文件路径 E:/2023/word/x4t able/get/n_13-A1-27_p. txt ENTRY YEAR AUTHOR INSTITUTE REFERENCE FACILITY SOURCE METHOD DETECTOR 10088 1970 LHusain 1USAARK J,PR/C,1,1233,1970 CCW D-T ACTIV GELI 26-FE-56(N 10186 1971 G.N.Salaita 1USASMU J,NPA,170,193,1971 VDG D-T ACTIV GELI 26-FE-56(N 100238 1975 D.L.Smith 1USAANL J,NSE,58,314,197511 DYNAM P-LI7,P-LI ACTIV GELI,NAICR 92-U-235(I 10417 1967 J.A.Grundl 1USAASL J,NSE,58,314,197511 DYNAM P-LI7,P-LI ACTIV GELI,NAICR 92-U-235(I 10417 1967 J.A.Grundl 1USAASL J,NSE,303,9,196710 VDG - ACTIV PROPC 13-AL-27(N 10431 1971 A.Bari 1USAAKK T,BARI,1971 CCW D-T ACTIV GELI - - 11076 1962	MONITOR ENERGY LP)25-MN-56,,SIG 13 14.8 14.8 14.8 1,F),,SIG 92-U-238(N, 2.805~9.96	Y POINTS
ENTRY YEAR AUTHOR INSTITUTE REFERENCE FACILITY SOURCE METHOD DETECTOR 10088 1970 LHusain 1USAARK J,PR/C,1,1233,1970 CCW D-T ACTIV GELI 26-FE-56(N 10186 1971 G.N.Salaita 1USASMU J,NP/A,170,193,1971 VDG D-T ACTIV GELI - 10238 1975 D.L.Smith 1USAANL J,NSE,58,314,197511 DYNAM P-LI7,P-LI ACTIV GELI,NAICR 92-U-235(I 10417 1967 J.A.Grundl 1USALS J,NSE,30,39,196710 VDG - ACTIV PROPC 13-AL-27(N 10431 1971 A.Bari 1USAARK T,SIG6,1976 CCW D-T ACTIV GELI - 10776 1976 R.A.Sigg 1USAARK T,SIG6,1976 CCW D-T ACTIV GELI - - 11196 1962 J.Kantele 1USAARK J,IP,33,353,62 CCW D-T ACTIV	MONITOR ENERGY I,P)25-MN-56,,SIG 13 14.8 14.8 1,F),,SIG 92-U-238(N, 2.805~9.96	iY POINTS
10088 1970 LHusain 1USAARK J,PR/C,1,1233,1970 CCW D-T ACTIV GELI 26-FE-56(N 10186 1971 G.N.Salaita 1USASMU J,NP/A,170,193,1971 VDG D-T ACTIV GELI - 10238 1975 D.L.Smith 1USAANL J,NSE,58,314,197511 DYNAM P-LI7,P-LI ACTIV GELI,NAICR 92-U-235(I 10417 1967 J.A.Grundl 1USALAS J,NSE,58,314,197511 DYNAM P-LI7,P-LI ACTIV GELI - 10417 1967 J.A.Grundl 1USALAS J,NSE,30,39,196710 VDG - ACTIV PROPC 13-AL-27(N 10431 1971 A.Bari 1USAARK T,BARI,1971 CCW D-T ACTIV GELI - - 10776 1976 R.A.Sigg 1USAARK T,BARI,1971 CCW D-T ACTIV GELI - - - - - - - - - - -	I,P)25-MN-56,,SIG 13 14.8 14.8 I,F),,SIG 92-U-238(N, 2.805~9.96	1
10186 1971 G.N.Salaita 1USASMU J,NP/A,170,193,1971 VDG D-T ACTIV GELI - 10238 1975 D.L.Smith 1USAANL J,NSE,58,314,197511 DYNAM P-LI7,P-LI ACTIV GELI,NAICR 92-U-235(I 10417 1967 J.A.Grundl 1USALAS J,NSE,30,39,196710 VDG - ACTIV PROPC 13-AL-27(N 10431 1971 A.Bari 1USAARK T,BARI,1971 CCW D-T ACTIV GELI - 10776 1976 R.A.Sigg 1USAARK T,SIGG,1976 CCW D-T ACTIV GELI 13-AL-27(N 11196 1962 J.Kantele 1USAARK J,NP,35,353,62 CCW D-T ACTIV - 29-CU-63(I 11274 1953 E.B.Paul 1CANCRC J,ZJP,31,267,1953 - D-T ACTIV - - - 11453 1959 O.M.Hudson Jr 1USATNC J,BAP,497(G2),5903 - - ACTIV - - - - - - - -	14.8 I,F),,SIG 92-U-238(N, 2.805~9.96	
10238 1975 D.L.Smith 1USAANL J,NSE,58,314,197511 DYNAM P-LI7,P-LI ACTIV GELI,NAICR 92-U-235(I 10417 1967 J.A.Grundl 1USALAS J,NSE,30,39,196710 VDG - ACTIV PROPC 13-AL-27(N 10417 1971 A.Bari 1USALAS J,NSE,30,39,196710 VDG - ACTIV PROPC 13-AL-27(N 10431 1971 A.Bari 1USAARK T,BARI,1971 CCW D-T ACTIV GELI - 10776 1976 R.A.Sigg 1USAARK T,SIGG,1976 CCW D-T ACTIV GELI 13-AL-27(N 11196 1962 J.Kantele 1USAARK J,NP,35,353,62 CCW D-T ACTIV - 29-CU-63(I 11274 1953 E.B.Paul 1CANCC J,ZJP,31,267,1953 - D-T ACTIV - - 13-AL-27(N 11474 1952 S.G.Forbes 1USALS J,PR,88,1309,1952 ACCEL D-T	N,F),,SIG 92-U-238(N, 2.805~9.96	1
10417 1967 J.A.Grundl 1USALAS J.NSE,30,39,196710 VDG - ACTIV PROPC 13-AL-27(N 10431 1971 A.Bari 1USAARK T,BARI,1971 CCW D-T ACTIV GELI - 10776 1976 R.A.Sigg 1USAARK T,SIGG,1976 CCW D-T ACTIV GELI 13-AL-27(N 11196 1962 J.Kantele 1USAARK J,NP,35,353,62 CCW D-T ACTIV - 29-CU-63(I 11274 1953 E.B.Paul 1CANCRC J,CJP,31,267,1953 - D-T ACTIV - - 11453 1959 O.M.Hudson Jr 1USATNC J,BAP,4,97(G2),5903 - - ACTIV - 13-AL-27(N 11474 1952 S.G.Forbes 1USALS J,PR,88,1309,1952 ACCEL D-T ACTIV - 29-CU-63(I 11474 1952 S.G.Forbes 1USALS J,PR,88,1309,1952 ACCEL D-T ACTIV -	D12 MC 27 CICIO2 2 44 111	82
10431 1971 A.Bari 1USAARK T,BARI,1971 CCW D-T ACTIV GELI - 10776 1976 R.A.Sigg 1USAARK T,SIGG,1976 CCW D-T ACTIV GELI 13-AL-27(N 11196 1962 J.Kantele 1USAARK J,NP,35,353,62 CCW D-T ACTIV - 29-CU-63(I 11274 1953 E.B.Paul 1CANCRC J,CJP,31,267,1953 - D-T ACTIV - - 11453 1959 O.M.Hudson Jr 1USATNC J,BAP,4,97(G2),5903 - - ACTIV - 13-AL-27(N 11474 1952 S.G.Forbes 1USALS J,PR,88,1309,1952 ACCEL D-T ACTIV - 29-CU-63(I 11474 1952 S.G.Forbes 1USALS J,PR,88,1309,1952 ACCEL D-T ACTIV - 29-CU-63(I 11484 1959 A.Poularikas 1USALSK J,PR,115,989,59 CCW D-T ACTIV - 29-CU-63(I 11492 1962 F.LHassler 1USABRN J,PR,125	1,P)12-IVIG-27,,SIG 92 2.44~14.1	12
10776 1976 R.A.Sigg 1USAARK T,SIGG,1976 CCW D-T ACTIV GELI 13-AL-27(N 11196 1962 J.Kantele 1USAARK J,NP,35,353,62 CCW D-T ACTIV - 29-CU-63(I 11274 1953 E.B.Paul 1CANCRC J,CJP,31,267,1953 - D-T ACTIV - - - 11453 1959 O.M.Hudson Jr 1USATNC J,BAP,4,97(G2),5903 - - ACTIV - 13-AL-27(N 11474 1952 S.G.Forbes 1USALAS J,PR,88,1309,1952 ACCEL D-T ACTIV - - 11474 1952 S.G.Forbes 1USALAS J,PR,88,1309,1952 ACCEL D-T ACTIV PROPC - 11484 1959 A.Poularikas 1USAARK J,PR,115,989,59 CCW D-T ACTIV - 29-CU-63(I 11492 1962 F.LHassler 1USABRN J,PR,125,1011,62 CCW D-T -	-	0
11196 1962 J.Kantele 1USAARK J.NP,35,353,62 CCW D-T ACTIV - 29-CU-63(I 11274 1953 E.B.Paul 1CANCRC J.CJP,31,267,1953 - D-T ACTIV - - 11453 1959 O.M.Hudson Jr 1USATNC J.BAP,4,97(G2),5903 - - ACTIV - 13-AL-27(N 11474 1952 S.G.Forbes 1USALAS J.PR,88,1309,1952 ACCEL D-T ACTIV - 29-CU-63(I 11474 1959 A.Poularikas 1USALAS J.PR,88,1309,1952 ACCEL D-T ACTIV - 29-CU-63(I 11484 1959 A.Poularikas 1USAARK J.PR,115,989,59 CCW D-T ACTIV - 29-CU-63(I 11492 1962 F.LHassler 1USABRN J.PR,125,1011,62 CCW D-T - TELES 1-H-1(N,EL 11494 1962 F.Gabbard 1USAKTY J.PR,128,1276,1962 VDG D-T ACTIV NAICR 13-AL-27(N 11512 1967 J.M.Ferguson 1	I,A)11-NA-24,,SIG 14.6	1
11274 1953 E.B.Paul 1CANCRC J,CJP,31,267,1953 - D-T ACTIV - - 11453 1959 O.M.Hudson Jr 1USATNC J,BAP,4,97(G2),5903 - - ACTIV - 13-AL-27(N 11474 1952 S.G.Forbes 1USALAS J,PR,88,1309,1952 ACCEL D-T ACTIV PROPC - 11484 1959 A.Poularikas 1USAAKK J,PR,115,989,59 CCW D-T ACTIV - 29-CU-63(I 11492 1962 F.L.Hassler 1USABRN J,PR,125,1011,62 CCW D-T - TELES 1-H-1(N,EL 11494 1962 F.Gabbard 1USAKTY J,PR,128,1276,1962 VDG D-T ACTIV NAICR 13-AL-27(N 11512 1967 J.M.Ferguson 1USANRD J,NP/A,98,65,6705 - - ACTIV NAICR 13-AL-27(N	N,2N)29-CU-62,,SIG 2 13.4~14.7	4
11453 1959 O.M.Hudson Jr 1USATNC J,BAP,4,97(G2),5903 - - ACTIV - 13-AL-27(N 11474 1952 S.G.Forbes 1USALAS J,PR,88,1309,1952 ACCEL D-T ACTIV PROPC - 11484 1959 A.Poularikas 1USAAKK J,PR,115,989,59 CCW D-T ACTIV - 29-CU-63(I 11492 1962 F.L.Hassler 1USABRN J,PR,125,1011,62 CCW D-T - TELES 1-H-1(N,EL 11494 1962 F.Gabbard 1USAKTY J,PR,128,1276,1962 VDG D-T ACTIV NAICR 13-AL-27(N 11512 1967 J.M.Ferguson 1USANRD J,NP/A,98,65,6705 - - ACTIV NAICR 13-AL-27(N	14.5	1
11474 1952 S.G.Forbes 1USALAS J.PR,88,1309,1952 ACCEL D-T ACTIV PROPC - 11484 1959 A.Poularikas 1USAARK J.PR,115,989,59 CCW D-T ACTIV - 29-CU-63(I 11492 1962 F.L.Hassler 1USABRN J.PR,125,1011,62 CCW D-T - TELES 1-H-1(N,EL 11494 1962 F.Gabbard 1USAKTY J.PR,128,1276,1962 VDG D-T ACTIV NAICR 13-AL-27(N 11512 1967 J.M.Ferguson 1USANRD J.NP/A,98,65,6705 - - ACTIV NAICR 13-AL-27(N	I,P)12-MG-27,,SIG 13 13.03~17.06	32
11484 1959 A.Poularikas 1USAARK J.PR,115,989,59 CCW D-T ACTIV - 29-CU-63(i 11492 1962 F.L.Hassler 1USABRN J.PR,125,1011,62 CCW D-T - TELES 1-H-1(N,EL 11494 1962 F.Gabbard 1USAKTY J.PR,128,1276,1962 VDG D-T ACTIV NAICR 13-AL-27(N 11512 1967 J.M.Ferguson 1USANRD J.NP/A,98,65,6705 - - ACTIV NAICR 13-AL-27(N	14.1	1
11492 1962 F.L.Hassler 1USABRN J.PR,125,1011,62 CCW D-T - TELES 1-H-1(N,EL 11494 1962 F.Gabbard 1USAKTY J.PR,128,1276,1962 VDG D-T ACTIV NAICR 13-AL-27(N 11512 1967 J.M.Ferguson 1USANRD J.NP/A,98,65,6705 - - ACTIV NAICR 13-AL-27(N	N,2N)29-CU-62,,SIG 14.8	1
11494 1962 F.Gabbard 1USAKTY J,PR,128,1276,1962 VDG D-T ACTIV NAICR 13-AL-27(N 11512 1967 J.M.Ferguson 1USANRD J,NP/A,98,65,6705 - - ACTIV NAICR 13-AL-27(N)1-H-1,,DA 14.4	1
11512 1967 J.M.Ferguson 1USANRD J,NP/A,98,65,6705 ACTIV NAICR 13-AL-27(N	I,P)12-MG-27,,SIG 12.4~17.7	14
	I,P)12-MG-27,,SIG,,A\ 12.35~13.89	40
11515 1968 N.Ranakumar 1USAGIT J,NP/A,122,679,1968 ACTIV GELI 26-FE-56(N	I,P)25-MN-56,,SIG 14.4	1
11524 1954 R.L.Henkel 1USALAS W,HENKEL,54	2.63~5.18	38
12730 1982 R.C.Harper 1USAAUB J,JP/G,8,153,8201 DYNAM D-T ACTIV,ASSOP GELI -	14.2	1
12912 1981 P.Welch 1USAOHO J,BAP,26,708(G3),198105 VDGT D-T ACTIV GELI -	20.~23.	2
12969 1987 J.W.Meadows 1USAANL J,ANE,14,489,1987 CCW D-T ACTIV GELI,FISCH 92-U-235(I	√,F),,SIG 92-U-238(N, 14.74	1
20280 1957 S.Yasumi 2JPNKON J.JPJ,12,443,5705 CCW D-T ACTIV PROPC -	14.1	1
20329 1961 M.Sakisaka 2JPNKON J,JPJ,16,1869,6110 CCW D-T ACTIV	14.1	1
20799 1973 J.C.Robertson 2UK NPL J,JNE,27,531,197308 VDG D-T ACTIV,COINC COIN,PROPC,NAICR 26-FE-56(N	i,P)25-MN-56,,SIG 14.78	1
20822 1972 J.C.Robertson 2UK NPL J,JNE,26,(1),1,1972 VDG D-D TOF,ACTIV SOLST -	4.3~5.27	18
20842 1978 P.Andersson 2SWDLND R,LUNF-D6-3021,7811 VDG D-T ACTIV GELI,LONGC 1-H-1(N,EL		1
20867 1978 T.B.Ryves 2UK NPL J.JP/G.4,(11),1783,78 VDG D-T ACTIV COIN,PROPC,NAICR,SOLS 26-FE-56(N)1-H-1,,SIG 14.9	6

•Python language •Tkinter package •Exfor X4 file was downloaded from IAEA website, X4 CD, etc. •Keywords: Entry, Year, Author, Institute, Reference, Facility, Source, Method, Detector, Monitor, Energy, Points •Output: Text, Excel.

By Tao Xi et al.

- 01 Introduction
- 02 Nuclear Reaction
- 03 Perspective

Nuclear Reaction Data

Platform for Chinese ExperimentsPlatform for Theoretical ModelsNuclear Data ImprovementPreparation for Experimental dataProcessing and V&V for PD

Photonuclear data library

- ✓ All of the photonuclear data are mainly evaluated based on the theoretical calculations with the Chinese photonuclear reaction codes GLUNF for the light 6 nuclei and MEND-G for the medium-heavy 264 nuclei with the standard ENDF-6 format.
- The incident photon energies for the medium-heavy nuclei are up to 200MeVand the n, p, d, t, He-3, α are considered to totally 18th particle emission reactions in the MEND-G code. Moreover, the new measurements.
- ✓ To ensure the availability and reliability of the PD file, nuclear data processing code system NJOY2016 and MCNP6 are used to verify and validate the PD library. The testing results show that the data structure of each nuclide is complete, the data content is reasonable, and can be applied to the simulation of Monte Carlo transport.

The comparisons the photonuclear data of CENDL-PD, JENDL/PD-2016, TENDL-2017, IAEA/PD-2019 and the experimental data for ²⁷Al and ⁶⁰Ni.

Supported by IAEA CRP contract No. 20466 26

Process 1: ACE-file generation Process 2: ACE-file verification Benchmarking 3: ACE-file V&V

Ping Liu, et al., Ann. Nucl. Ene. 2024

Nuclear Reactions

Perspective

New Evaluation Project and Data in CENDL-4.0

Motivation: Precision, Total number, Types

the coming 2025

I	Departion	JENDL-5₊	ENDF/B-VIII.04	JEFF-3.3	CENDL-3.2	CENDL-4.0	BROND-3.1+	TENDL*
μDø	Reaction	2021.	2018.	2017.	2020	2025.	2016.	2021.
1.0	Photo-Nuclear Data (G)	2684.	163.	0*3	0 ₽	266⊷	0 ₽	2804
2₽	Photo-Atomic Interaction Data (PHOTO).	100~	100.	0 .₽	0 ₽	0 ₽	0 ₽	0 ⊷
3₽	Radioactive Decay Data (DECAY)	4071.	3821	3852.	0	2354. (A=66~172).	0	0.0
4₽	Spontaneous Fission Product Yields (S/FPY)	10 ~	9⇔	3.₀	0 ₽	9 ø	0 ,₀	0.0
5₽	Atomic Relaxation Data (ARD).	100 * ³	100.	0 ₽	0 ₽	0 ₽	0 ₽	0 ⊷
6 ₽	Incident-Neutron Data (N).	795⊷	557÷	<u>562</u> ₽	272.0	410	372.	2813.
- 7₽	Neutron-Induced Fission Product Yields (N/FPY)	31	31.	19 ₽	0 ⊷	31.0	0 ⊷	0.0
8₽	Thermal Neutron Scattering Data (TSL)-	62₽	34.0	20.0	0 ₽	0 ≓	0 ₽	0 ⊷
9₽	Electro-Atomic Interaction Data (E)-	100 ⊷	100.	0 ₊ ²	0 ₽	0 ₽	0 ₽	0 ₽
10 ₽	Incident-Proton Data (P).	239.	49 .	0,	0 ,₀	78	0 ,₀	2812.
11 ₽	Incident-Deuteron Data (D)-	9₊∍	5₽	0 ,	0 ₽	0.	0 ₽	2903.
12.	Incident-Triton Data (T).	0 ₽	5₽	0 ,₀	0 ₽	0 ₽	0 ₽	2810.
13.	Incident-He3 Data (He3),	0 ₽	3.₽	0 ,₀	0 ₽	0.	0 ₽	2809
1 4₀	Incident-Alpha Data (He4),	18.	1.0	0 ₽	0 ₽	0 ₽	0 ₽	2808*
15.	Activation Data.	Special purposed lib.	e.	e.	0 ,₀	818.	e.	÷

Many thanks to the collaborators and CENDL project:

All the great contributions from CNDC and CNDCN(China Nuclear Data Coordination Network) IAEA: Roberto, Arjan, Vivian, Otsuka et al. from IAEA, and CRP 20466

Herbert Muether (Tue. Uni.)

Thank you for your attention!