The dipole photon strength of uranium isotopes from TAC measurements at $n_{-}TOF$

Standa Valenta for n_TOF collaboration

July 10, 2024

PSFs in U's from n_TOF

The dipole photon strength of uranium isotopes from TAC measurements at n_TOF

PHYSICAL REVIEW C 105, 024618 (2022)

Constraints on the dipole photon strength for the odd uranium isotopes

J. Moreno-Soto,^{1,*} S. Valenta,^{2,†} E. Berthoumieux,¹ A. Chebboubi,³ M. Diakaki,³ W. Dridi,⁴ E. Dupont,¹ F. Gunsing,^{1,‡} M. Krtička,² O. Litaize,³ O. Serot,³ O. Aberle,⁵ V. Alcayne,⁶ S. Amaducci,⁷ J. Andrzejewski,⁸ L. Audouin,⁹ V. Bécares,⁶ V. Babiano-Suarez,¹⁰ M. Bacak,^{5,11,1} M. Barbagallo,^{5,12} Th. Benedikt,¹³ S. Bennett,¹⁴ J. Billowes,¹⁴ D. Bosnar,¹⁵ A. Brown,¹⁶ M. Busso,^{17,18} M. Caamaño,¹⁹ L. Caballero-Ontanaya,¹⁰ F. Calviño,²⁰ M. Calviani,⁵ D. Cano-Ott,⁶ A. Casanovas,²⁰ F. Cerutti,⁵ E. Chiaveri,^{5,14} N. Colonna,¹² G. Cortés,²⁰ M. A. Cortés-Giraldo,²¹ L. Cosentino,⁷ S. Cristallo,^{17,22} L. A. Damone,^{12,23} P. J. Davies,¹⁴ M. Dietz,²⁴ C. Domingo-Pardo,¹⁰ R. Dressler,²⁵ Q. Ducasse,²⁶ I. Durán,¹⁹ Z. Eleme,²⁷ B, Fernández-Domínguez,¹⁹ A, Ferrari,⁵ P, Finocchiaro,⁷ V, Furman,²⁸ K, Göbel,¹³ A, Gawlik-Ramiega,⁸ S, Gilardoni,⁵ I. F. Goncalves,²⁹ E. González-Romero,⁶ C. Guerrero,²¹ S. Heinitz,²⁵ J. Heyse,³⁰ D. G. Jenkins,¹⁶ A. Junghans,³¹ F. Käppeler,^{32,§} Y. Kadi,⁵ A. Kimura,³³ I. Knapová,² M. Kokkoris,³⁴ Y. Kopatch,²⁸ D. Kurtulgil,¹³ I. Ladarescu,¹⁰ C. Lampoudis,³⁵ C. Lederer-Woods,²⁴ S. J. Lonsdale,²⁴ D. Macina,⁵ A. Manna,^{36,37} T. Martínez,⁶ A. Masi,⁵ C. Massimi,^{36,37} P. Mastinu.³⁸ M. Mastromarco,⁵ E. A. Maugeri,²⁵ A. Mazzone,^{12,39} E. Mendoza,⁶ A. Mengoni,⁴⁰ V. Michalopoulou,^{5,34}) OF P. M. Milazzo,⁴¹ F. Mingrone,⁵ A. Musumarra,^{7,42} A. Negret,⁴³ R. Nolte,²⁶ F. Ogállar,⁴⁴ A. Oprea,⁴³ N. Patronis,²⁷ A. Pavlik,⁴⁵ J. Perkowski,⁸ L. Piersanti,^{17,22} C. Petrone,⁴³ E. Pirovano,²⁶ I. Porras,⁴⁴ J. Praena,⁴⁴ J. M. Ouesada,²¹ D. Ramos-Doval,⁹ T. Rauscher,^{46,47} R. Reifarth,¹³ D. Rochman,²⁵ M. Sabaté-Gilarte,^{21,5} A. Saxena,⁴⁸ P. Schillebeeckx,³⁰ D. Schumann,²⁵ A. Sekhar,¹⁴ A. G. Smith,¹⁴ N. V. Sosnin,¹⁴ P. Sprung,²⁵ A. Stamatopoulos,³⁴ G. Tagliente,¹² J. L. Tain,¹⁰ A. Tarifeño-Saldivia.²⁰ L. Tassan-Got.^{5,34,9} P. Torres-Sánchez.⁴⁴ A. Tsinganis.⁵ J. Ulrich.²⁵ S. Urlass.^{31,5} G. Vannini.^{36,37} **CNR*24** PSEs in U's from n_TOF July 10, 2024 1/44

neutron_Time Of Flight facility

<ロト < 四ト < 三ト < 三ト

neutron_Time Of Flight facility

What is neutron time of flight?

Približne 6 720 000 výsledkov (0,46 sekundy)

The Neutron Time Of Flight (n-TOF) facility is a neutron spectrometer at CERN. It consists of a pulsed source, a flight path of 200 m length, and a detector systems. Neutron energies are deduced from the time of flight between source and detector; hence the name of the facility.

Podobné dopyty 💠	
How fast is a neutron?	~
What is the relation between the neutron wavelength and the time of flight over a particular distance?	~
What is the temperature of thermal neutron?	~
	Spätná väzba

Ø Vybrané úryvky • M Spätná väzba

Neutron Time Of Flight Preložené z angličilny - Zariadenie Neutron Time Of Flight je neutrónový spektrometer v CERN-e. Pozostáva z impulzného zdroja, dráty letu s dížkou 200 m a systému detektorov. Energie neutrónov sů odvodené z času letu medzi zdrojom a detektorom; odtal názov zariadenia. Wikipédia (angličita)

CNR*24

PSFs in U's from n_TOF

What is neutron time of flight?

neutron_Time Of Flight facility

neutron_Time Of Flight facility

EAR1

Experimental ARea 1

Experimental conditions & samples

	²³⁴ U	²³⁶ U	²³⁸ U
Mass (mg)	32.7	338	6125
Areal density $(10^{-4} \text{ atoms/b})$	1.07	10.9	9.56
Canning	Ti	AI	Al
$S_n^{ m compound} pprox Q$ (MeV)	5.297	5.126	4.806
Resolution @ 0.9 MeV (%)	14.5	16.5	16.5
Absorber	⁶ Li-salt	B-PE	B-PE

CNR*24

Spectra of energy sums for strong isolated resonances

Spectra of energy sums for strong isolated resonances

The energies forming the cascades ev-by-ev

Experimental multi-step γ cascades (MSC) spectra

Average experimental MSC spectra

Average experimental MSC spectra

July 10, 2024 21 / 44

Simulations of MSC and sum-energy spectra

Cascades from DICEBOX simulation

CNR*24

Simulations of MSC and sum-energy spectra

Cascades from DICEBOX simulation

$$\Gamma_{i\gamma f} = \sum_{XJ} y_{ifXJ}^2 (E_i - E_f)^{2J+1} \frac{f^{(XJ)}(E_i - E_f)}{\rho(E_i, J_i, \pi_i)}$$

are fed to ${\ensuremath{\operatorname{GEANT4}}}$ detector response of TAC

Simulations of MSC and sum-energy spectra

Cascades from DICEBOX simulation

$$\Gamma_{i\gamma f} = \sum_{XJ} y_{ifXJ}^2 (E_i - E_f)^{2J+1} \frac{f^{(XJ)}(E_i - E_f)}{\rho(E_i, J_i, \pi_i)}$$

are fed to ${\ensuremath{\operatorname{GEANT4}}}$ detector response of TAC

Nuclear levels and their decay/excitation

Lane and Lynn defined the photon strength function $S^{(XL)}$ as rescaled smoothed cross section:

$$S^{(XL)}(E_{\gamma}) = \frac{1}{(\pi\hbar c)^2} \frac{\overline{\sigma}_{\gamma}^{(XL)}(E_{\gamma})}{(2L+1)E_{\gamma}^{2L-1}},$$
(1)

or related to the partial radiation width according to Bartholomew:

$$S^{(XL)}(E_{\gamma}) = \frac{\overline{\Gamma}_{i\gamma f}^{(XL)}(E_{\gamma})\rho(E_i, J_i, \pi_i)}{E_{\gamma}^{2L+1}},$$
(2)

These two definitions are connected by detailed-balance principle:

$$\overline{\Gamma}_{i\gamma f}^{(XL)}(E_{\gamma})\rho(E_{i},J_{i},\pi_{i}) = \frac{E_{\gamma}^{2}}{(\pi\hbar c)^{2}}\frac{1}{2L+1}\overline{\sigma}_{\gamma,f\to E_{i}}^{(XL)}(E_{\gamma}),$$

Giant Electric Dipole Resonance

- measured in (γ,xn) experiments
- from classical electrodynamics this collective mode in *E*1 PSF should be described by Lorentzian shape $S_{SLO}^{E1} = \frac{1}{3(\pi hc)^2} \frac{\sigma_G E_G \Gamma_G^2}{(E_Y^2 E_G^2)^2 + E_Y^2 \Gamma_G^2}$
- positions E_G, widths Γ_G and cross sections σ_G obtained from fits of data
- extrapolation below S_n uncertain ⇒ phenomenological models: KMF, GLO, EGLO, MGLO, ... and calculations

Giant Electric Dipole Resonance

Scissors Mode

- M1 collective states in deformed nuclei predicted by theory: Interacting Boson Model, Two-Rotor Model
- experimentally discovered in (e,e') on 156 Gd
- measured in nuclear resonance fluorescence scattering (NRF; (γ, γ')) for many rare-earths and later for actinides
- \Rightarrow experimental SM strength dependence on ...
- in decay confirmed from neutron capture & in light ion induced reactions Oslo method
- the results from different reactions usually agree on the position of SM, but sometimes differ in strength

< □ > < □ > < □ > < □ > < □ > < □ >

Scissors Mode

- M1 collective states in deformed nuclei predicted by theory: Interacting Boson Mode Two-Rotor Model
- experimentally discovered in (e,e') on 156 Gd \ge
- measured in nuclear resonance fluorescence scattering (NRF; (γ, γ')) for many rare-earth and later for actinides
- \Rightarrow experimental SM strength dependence of
- in decay confirmed from neutron capture & light ion induced reactions – Oslo method
- the results from different reactions usually agree on the position of SM, but sometimes differ in strength

July 10, 2024 27 / 44

Scissors Mode

- M1 collective states in dei predicted by theory: Intera Two-Rotor Model
- experimentally discovered
- measured in nuclear reson ^τ scattering (NRF; (γ, γ')) 1 and later for actinides

- $\bullet \ \Rightarrow \ \text{experimental SM strength dependence on } \ldots$
- in decay confirmed from neutron capture & in light ion induced reactions Oslo method
- the results from different reactions usually agree on the position of SM, but sometimes differ in strength

(a) 2.7-3.7 MeV

(b) 0-10 MeV

158

160

162

164

166

Α

168

170

5

Neutron capture and Statistical model of γ decay

Scissors Mode

- experimentally discover $\widehat{\mathbb{A}^2_{\mathcal{X}}}_{6}$
- measured in nuclear $\sum_{g \in 4}^{g}$ scattering (NRF; $(\gamma, \bigcap_{g \in 2}^{m})$ and later for actinide
- \Rightarrow experimental SM
- in decay confirmed from neutron capture & in light ion induced reactions Oslo method

156

 the results from different reactions usually agree on the position of SM, but sometimes differ in strength

DANCE MSC

rescaled Er NRF Gd

Oslo

- from **RIPL-3** database: the analytical **GLO** model for *E*1 PSF and the spin-flip **SF** Lorentzian for *M*1 PSF coupled with the constant-temperature **CT** NLD model,
- the PSFs models proposed in recent **IAEA-19** Coordinated Research Project based on **microscopic** calculations combined with some phenomenological parts used with microscopically based **HFB** plus combinatorial NLD,
- the original model interpretation of the Oslo PSF and NLD data:
 EGLO E1 model, the SM and SF M1 Lorentzians, and the CT NLD,
- DANCE model combination: MGLO *E*1 model, the SM and SF *M*1 Lorentzians, and the CT NLD

< □ > < 同 > < 回 > < 回 > < 回 >

- from **RIPL-3** database: the analytical **GLO** model for *E*1 PSF and the spin-flip **SF** Lorentzian for *M*1 PSF coupled with the constant-temperature **CT** NLD model,
- the PSFs models proposed in recent **IAEA-19** Coordinated Research Project based on **microscopic** calculations combined with some phenomenological parts used with microscopically based **HFB** plus combinatorial NLD,
- the original model interpretation of the Oslo PSF and NLD data:
 EGLO E1 model, the SM and SF M1 Lorentzians, and the CT NLD,
- DANCE model combination: MGLO *E*1 model, the SM and SF *M*1 Lorentzians, and the CT NLD

< □ > < □ > < □ > < □ > < □ > < □ >

- from **RIPL-3** database: the analytical **GLO** model for *E*1 PSF and the spin-flip **SF** Lorentzian for *M*1 PSF coupled with the constant-temperature **CT** NLD model,
- the PSFs models proposed in recent **IAEA-19** Coordinated Research Project based on **microscopic** calculations combined with some phenomenological parts used with microscopically based **HFB** plus combinatorial NLD,
- the original model interpretation of the Oslo PSF and NLD data:
 EGLO E1 model, the SM and SF M1 Lorentzians, and the CT NLD,
- DANCE model combination: MGLO *E*1 model, the SM and SF *M*1 Lorentzians, and the CT NLD

< □ > < □ > < □ > < □ > < □ > < □ >

- from **RIPL-3** database: the analytical **GLO** model for *E*1 PSF and the spin-flip **SF** Lorentzian for *M*1 PSF coupled with the constant-temperature **CT** NLD model,
- the PSFs models proposed in recent **IAEA-19** Coordinated Research Project based on **microscopic** calculations combined with some phenomenological parts used with microscopically based **HFB** plus combinatorial NLD,
- the original model interpretation of the Oslo PSF and NLD data:
 EGLO E1 model, the SM and SF M1 Lorentzians, and the CT NLD,
- DANCE model combination: MGLO *E*1 model, the SM and SF *M*1 Lorentzians, and the CT NLD

E 6 4 E 6

Literature E1 PSFs of ²³⁹U

Literature M1 PSFs of ²³⁹U

Literature NLD of ²³⁹U

Results

^{235,239}U - RIPL-3 & IAEA-19

 $^{\mathrm{even}}\mathrm{U}(\mathit{n},\gamma)$ analysis

Results

^{235,239}U – Oslo & DANCE

$^{235,239}\text{U}$ – adjusted PSFs from n_TOF analysis

 $^{\mathrm{even}}\mathrm{U}(\mathit{n},\gamma)$ analysis

Results

239 U – MGLO with k = 3 vs k = 1.8

Model combination PSF-LD	$ $ ²³⁴ U(n, γ)	$\Gamma_{\gamma} \ ({ m meV}) \ ^{236}{ m U}({\it n},\gamma)$	$^{238}\mathrm{U}(n,\gamma)$
RIPL-3	16.1(2)	12.9(2)	9.5(2)
IAEA-19	29.4(6)	19.3(5)	13.9(5)
Oslo	19.9(4)	20.4(6)	18.6(8)
DANCE	22.0(5)	17.2(4)	15.9(6)
MGLO(1.8)	25.4(7)	20.1(5)	15.9(6)
MGLO(2.5)	30.5(10)	23.9(7)	18.8(7)
MGLO(3.0)	39.0(12)	30.9(9)	24.3(9)
MGLO(k, T(E))	26.7(7)*	24.5(6) [†]	19.2(7) [‡]
Mughabghab's atlas 2006	25.3(10)	23.4(8)	23.36(31)
Mughabghab's atlas 2018	36.7(7)	23.4(8)	22.9(4)
JEFF-3.3	26.0	23.0	22.5
ENDF/B-VIII.0	26.0	19.5	22.5
with $k = 1.8$; [†] with $k =$	= 2.5; [‡] witl	h $k = 3.0$	

Results

Resulting E1 PSF for ²³⁹U

Results

Resulting M1 PSF for ²³⁹U

Resulting dipole PSF for $^{\rm 239}{\rm U}$

 \bullet sum-energy and MSC spectra of $^{\rm odd}U$ measured with TAC at n_TOF

- no available model combination is able to describe our data
- we have performed extended search to find a satisfactory reproduction of our experimental spectra
- and we succeeded, see 10.1103/PhysRevC.105.024618 ;)
- CT LD is strongly favored (with unique parameters for each isotope)
- MGLO model is able to describe the *E*1 PSF for energies from 0 to GEDR region
- scissors mode strongly influences decay below *S_n*, two-resonance form is strongly favored
- taking Γ_{γ} 's into account implies there are no universal PSFs for odd U's, i.e. SM strength increases with mass

- \bullet sum-energy and MSC spectra of $^{\rm odd}U$ measured with TAC at n_TOF
- no available model combination is able to describe our data
- we have performed extended search to find a satisfactory reproduction of our experimental spectra
- and we succeeded, see 10.1103/PhysRevC.105.024618 ;)
- CT LD is strongly favored (with unique parameters for each isotope)
- MGLO model is able to describe the *E*1 PSF for energies from 0 to GEDR region
- scissors mode strongly influences decay below *S_n*, two-resonance form is strongly favored
- taking Γ_{γ} 's into account implies there are no universal PSFs for odd U's, i.e. SM strength increases with mass

- \bullet sum-energy and MSC spectra of $^{\rm odd}U$ measured with TAC at n_TOF
- no available model combination is able to describe our data
- we have performed extended search to find a satisfactory reproduction of our experimental spectra
- and we succeeded, see 10.1103/PhysRevC.105.024618 ;)
- CT LD is strongly favored (with unique parameters for each isotope)
- MGLO model is able to describe the *E*1 PSF for energies from 0 to GEDR region
- scissors mode strongly influences decay below *S_n*, two-resonance form is strongly favored
- taking Γ_γ's into account implies there are no universal PSFs for odd U's, i.e. SM strength increases with mass

- \bullet sum-energy and MSC spectra of $^{\rm odd}U$ measured with TAC at n_TOF
- no available model combination is able to describe our data
- we have performed extended search to find a satisfactory reproduction of our experimental spectra
- and we succeeded, see 10.1103/PhysRevC.105.024618 ;)
- CT LD is strongly favored (with unique parameters for each isotope)
- MGLO model is able to describe the *E*1 PSF for energies from 0 to GEDR region
- scissors mode strongly influences decay below *S_n*, two-resonance form is strongly favored
- taking Γ_γ's into account implies there are no universal PSFs for odd U's, i.e. SM strength increases with mass

- \bullet sum-energy and MSC spectra of $^{\rm odd}U$ measured with TAC at n_TOF
- no available model combination is able to describe our data
- we have performed extended search to find a satisfactory reproduction of our experimental spectra
- and we succeeded, see 10.1103/PhysRevC.105.024618 ;)
- CT LD is strongly favored (with unique parameters for each isotope)
- MGLO model is able to describe the *E*1 PSF for energies from 0 to GEDR region
- scissors mode strongly influences decay below *S_n*, two-resonance form is strongly favored
- taking Γ_γ's into account implies there are no universal PSFs for odd U's, i.e. SM strength increases with mass

- \bullet sum-energy and MSC spectra of $^{\rm odd}U$ measured with TAC at n_TOF
- no available model combination is able to describe our data
- we have performed extended search to find a satisfactory reproduction of our experimental spectra
- and we succeeded, see 10.1103/PhysRevC.105.024618 ;)
- CT LD is strongly favored (with unique parameters for each isotope)
- MGLO model is able to describe the *E*1 PSF for energies from 0 to GEDR region
- scissors mode strongly influences decay below *S_n*, two-resonance form is strongly favored
- taking Γ_γ's into account implies there are no universal PSFs for odd U's, i.e. SM strength increases with mass

- \bullet sum-energy and MSC spectra of $^{\rm odd}U$ measured with TAC at n_TOF
- no available model combination is able to describe our data
- we have performed extended search to find a satisfactory reproduction of our experimental spectra
- and we succeeded, see 10.1103/PhysRevC.105.024618 ;)
- CT LD is strongly favored (with unique parameters for each isotope)
- MGLO model is able to describe the *E*1 PSF for energies from 0 to GEDR region
- scissors mode strongly influences decay below S_n , two-resonance form is strongly favored

 taking Γ_γ's into account implies there are no universal PSFs for odd U's, i.e. SM strength increases with mass

< □ > < 同 > < 回 > < 回 > < 回 >

- \bullet sum-energy and MSC spectra of $^{\rm odd}U$ measured with TAC at n_TOF
- no available model combination is able to describe our data
- we have performed extended search to find a satisfactory reproduction of our experimental spectra
- and we succeeded, see 10.1103/PhysRevC.105.024618 ;)
- CT LD is strongly favored (with unique parameters for each isotope)
- MGLO model is able to describe the *E*1 PSF for energies from 0 to GEDR region
- scissors mode strongly influences decay below S_n , two-resonance form is strongly favored
- taking Γ_γ's into account implies there are no universal PSFs for odd U's, i.e. SM strength increases with mass

< □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

Thank You for listening!

æ

< □ > < □ > < □ > < □ > < □ >

BACK-UP

SM two- or single- resonance? E1 Pygmy?

BACK-UP

LEE? For moderate one we can not say.

The influence of LEE depends on its shape and magnitude.

In general LEE shifts the multiplicity to higher values, but the footprint in spectra is not so straightforward due to gamma energy threshold. Note that if LEE is sizable and "squished" to very low energies, the internal conversion will hide its presence in MSC spectra. The question would then be if there are so many electrons flying out?

BACK-UP

Footprint of individual SM resonance terms

