

The neutron-induced fission cross section on ²³⁵U measurement at the n_TOF facility at CERN

A. <u>Manna</u>, E. Pirovano, P. Console Camprini, L. Cosentino,
M. Dietz, Q. Ducasse, P. Finocchiaro, C. Le Naour, D. Mancusi,
C. Massimi, A. Mengoni, R. Nolte, D. Radeck, L. Tassan-Got,
N. Terranova, G. Vannini, A. Ventura for the n_TOF Collaboration

Compound-Nuclear Reactions and Related Topics (CNR*24), Vienna - 8-12 July 2024

Radiative capture reactions (n.v) (94)Fission reactions (n,f) (37) Light particle emission reactions (n,lcp) (11)

What we have done at n_TOF

Radiative capture reactions (n,y)	(94)
Fission reactions (n,f)	(37)
Light particle emission reactions (n,lcp)	(11)
Detector developments	(6)

What we have done at n_TOF

S. Amaducci^{1,35}, L. Cosentino¹, M. Barbagallo², N. Colonna², A. Mengoni^{3,4}, C. Massimi^{4,5}, S. Lo Meo^{3,4},

- P. Finocchiaro^{1,a}, O. Aberle⁶, J. Andrzejewski⁷, L. Audouin⁸, M. Bacak^{9,6,10}, J. Balibrea¹¹, F. Bečvář¹², F. Betheumiaur¹⁰, J. Billower¹³, D. Benner¹⁴, A. Breum¹⁵, M. Casmañal⁶, F. Calviñal⁷, M. Calvini⁶, D. Cana

compared to the ENDF-B/VIII and JEFF3.3 evaluations.

from 25 meV to 170 keV

²³⁵U(n,f) cross section included (adopted) in the IAEA Standards database

The ratios in the overlapping neutron energy region between the different detector give us the confidence for the result at higher energy

Neutron Energy [MeV]

...at high neutron energy

energy limit extension

Comparison with model calculation

...at high neutron energy

energy limit extension

Calculation applied to (p,f)

Comparison with model calculation

Fission Fragment Angular Distribution

- For more than 20 years, an extensive fission measurement program has been carried out @ n_TOF
- Recently, the most significant result obtained for ²³⁵U(n,f) cross section:
 extension of the neutron energy range of more than 200 MeV (with respect to the previous limit – Lisowski data)
 - Transient time effect in neutron-induced fission
 - Isospin effect in the high energy region

Next?

- \mathbb{X} Further extension of the energy limit \rightarrow GeV
- * + simultaneous FFAD measurement

only possible at n_TOF

Thank you for your attention

- For more than 20 years, an extensive fission measurement program has been carried out @ n_TOF
- Recently, the most significant result obtained for ²³⁵U(n,f) cross section:
 extension of the neutron energy range of more than 200 MeV (with respect to the previous limit – Lisowski data)
 - Transient time effect in neutron-induced fission
 - Isospin effect in the high energy region

Next?

- \mathbb{X}^{\sim} Further extension of the energy limit \rightarrow GeV
- # simultaneous FFAD measurement

only possible at n_TOF

²³⁵U(n,f) cross section

Arndt, VL40

$$\Phi(E_n) = \frac{C_{C_2H_4}(E_n) - r_C C_C(E_n)}{n_H \varepsilon(E_n)! d\sigma_{n,p}(E_n)/d\Omega}$$

$$\sigma_f(E_n) = \frac{C(E_n)}{N \Phi(E_n) \varepsilon}$$

²³⁵U(n,f) cross section

²³⁵U(n,f) cross section - Uncertainties

Distance of the detectors from the PE or C sample

Fission Chambers:

- 😣 ²³⁵U mass
- ²³⁵U effective density
- 🔶 Efficiency

INFŃ

+ Correlated uncertainties

- Beam transmission through PPFC, PPAC
 - Isotopic composition of PE
 - Areal density of PE sample
 - Areal density of C sample

²³⁵U(n,f) cross section - Uncertainties

The energy range studied in different regions

 \rightarrow different detectors used or different working conditions

	Uncertainty En = [10-27] MeV	Uncertainty En = [28-38] MeV	Uncertainty En = [38-140] MeV	Uncertainty En > 140 MeV	
Systematics		4.5%	4.5%		xs extracted with
Statistics		2.4 - 3.5%	2.2-7.3%		FC and 3s-RPT
Systematics	6.5%		3.5%	4.0-4.3%	xs extracted with
Statistics	2.5 - 4.2%		2.7-3.6%	2.6-3.7%	PPAC and MS-RPT
			1.7.0.00/		
			1.7-2.2%		Correlated
Total	5.7-8.1%	5.7-5.2 %	3.7-4.9%	4.8-5.6%	Final

000

Uncertainties

...for FF events PPFC related

Lap

INFN

...for FF events PPAC related

Contribution	Uncertainty	101 F	F evenus PP	AC related
Beam transmission through PPFC, PPAC	0.5 %	Source of	Uncertainty	Uncertainty
Isotopic composition of PE	1.5 %		E < 200 MJ	$E > 200 M_{\odot}V$
Areal density of PE sample	0.2-0.6 %	uncertainty	$E_n < 200 \text{ MeV}$	$E_n > 200 \text{ MeV}$
Areal density of C sample	0.2-0.9 %	Sample mass	1.0%	1.0%
Cuts the ΔE -E matrix for selecting proton events	0.5%	Trajectories reconstruction	0.4%	0.4%
Fit of MCNPX simulations to the experimental light-output distributions	≤2.5 %	Efficiency calculation fit	2.0%	2.0%
Effective area of the ΔE_2 detector	0.5 %	Anisotropy correction	1.2%	-
Distance of the detectors from the PE or C sample	0.8%			
Angle relative to the neutron beam	0.1-0.6 %			
Dead-time correction	0.5-1.0 %	for	neutron flux r	neasurement

MS-RPTs related

0.5%

0.5%

for neutron flux measurement 3s-RPTs related			Source of uncertainty	Uncertainty $E_n = [10-30] \text{ MeV}$	Uncertainty $E_n = [38-200] \text{ MeV}$	Uncertainty $E_n > 200 \text{ MeV}$
Contribution	Uncertainty (average)	Single deposit	C_2H_4 mass	0.4%	0.2-0.5%	0.2-0.5%
²³⁵ U mass fraction	0.0014 %	0.0014 %	C mass	1.4%	0.5- $0.6%$	$0.5 ext{-} 0.6\%$
²³⁵ U mass per unit area	0.2%	0.6 %	Signal Reconstruction	1.8%	0.5%	0.7%
235 U effective density correction $k_{\rm U}$	0.6%	1-2.5 %	Dead time correction	2.0%	1.0%	1.0%
Zero-bias efficiency	1.3 %	1.1-1.3 %	Cuts in the $\Delta \text{E-E}$ matrix	5.0%	2.0%	2.0%
Efficiency, extrapolation below thr.	3 %	2-4.5 %	Telescope angle	0.6%	0.9%	1.0%
Dead-time correction k_{τ}	0.2 %	0.04-0.2 %	Telescope position	0.7%	0.7%	0.7%
	Beam transmission	0.8%	0.8%	0.8%		

Beam profile

0.5%

Polyethylene samples

Characterization

- mass density from hydrostatic weighing (PTB)
- thickness: precision measurement of the profile (PTB)
- uncertainty on the areal density:0.2-0.6%

Thickness Areal density Density Sample g/cm^3 g/cm² (mm)(rel. unc.) PE 1mm 0.9534(20) 0.0978(4)1.025(4)(0.4%)PE 2mm 1.824(11)0.9555(20)0.1743(11)(0.6%)PE 5mm 4.925(4)0.9597(20)0.4726(11) (0.2%)C 0.5mm 0.500(4)1.7749(27) 0.0887(8)(0.9%)C 1mm 1.000(5)1.7364(86) 0.1736(12)(0.7%)C 2.5mm 2.500(4)1.7512(32) 0.4378(11)(0.3%)

- H/C ratio via combustion analysis, two measurements (Forschungszentrum Jülich, TU Braunschweig): 1.98(3) and 2.00(3)
- In the simulations: assumed nominal stichometry H/C=2

PPAC – Parallel Plate Avalanche Counters

PPAC – Parallel Plate Avalanche Counters

INFN

INTOF

PPAC – Parallel Plate Avalanche Counters

