Constraining experimentally photon strength functions using real photons at the $HI\gamma S/TUNL$ facility

Adriana Banu

Department of Physics and Astronomy, James Madison University, Harrisonburg, Virginia, USA

The 7th International Workshop on Compound-Nuclear Reactions and Related Topics July 8-12, 2024, International Atomic Energy Agency, Vienna, Austria

Collaborators:

A. M. Balbuena, R. L. Geissler, A. S. Kirk, E. G. Meekins,
B. E. A. Witczak (undergraduate students)
James Madison University, Department of Physics and Astronomy

```
U. Friman-Gayer<sup>(*)</sup>, S. W. Finch, R. V. F. Janssens, C. R. Howel,
H. J. Karwowski et al.
```

Triangle Universities Nuclear Laboratory (TUNL) Duke University, University of North Carolina at Chapel Hill (*) currently at Vysus Group Sweden AB, Malmö, Sweden

J.A. Silano Nuclear and Chemical Sciences Division Lawrence Livermore National Laboratory

S. Goriely Institut d'Astronomie et d'Astrophysique (IAA) Université Libre de Bruxelles

The p-process is responsible for the nucleosynthesis beyond iron of 35 stable neutron-deficient nuclei

B²FH, Rev. Mod. Phys. 29, 547 (1957)

p-Process Nucleosynthesis:

an extended network of some 20000 reactions linking about 2000 nuclei in the A \leq 210 mass range

- Photodisintegrations (γ,n) , (γ,p) , (γ,α)
- n-, p-, α -capture reactions
- β⁺-decays

M. Arnould & S. Goriely, Phys. Rep. 384, 1 (2003)

Image from C. Iliadis, Nuclear Physics of Stars (2007)

The **gs contribution** to the **stellar rate** for photodisintegration reactions concerning *p*-nuclei typically is only a few tenths per mille.

T. Rauscher, Ap. J. Suppl. 201, 26 (2012)

Photodisintegration experiments can only be used to derive information on certain nuclear properties required for the calculation of the stellar rates and, thus, to test and support the theory (statistical Hauser-Feshbach models)!!

- Gamma-ray strength function
- Nuclear level density

Nuclear Resonance Fluorescence (NRF) Measurements on 78,80 Kr to determine the γ SF for p-process nucleosynthesis calculations

PHYSICAL REVIEW C 73, 015804 (2006)

Branchings in the γ process path revisited

Thomas Rauscher* Departement für Physik und Astronomie, Universität Basel, CH-4056 Basel, Switzerland

BRANCHINGS IN THE γ PROCESS PATH REVISITED

PHYSICAL REVIEW C 73, 015804 (2006)

TABLE II. Nuclei with large rate uncertainties (derived from rate set A [10], see text); subscripts at each neutron number indicate which rate $(\lambda_{\gamma p} \text{ or } \lambda_{\gamma \alpha})$ is close to the $\lambda_{\gamma n}$ rate within factors of 3 and 10, respectively.

Ζ	Neutron number N at given temperature T_9		
-	2.0	2.5	3.0
34	42 _{ee}		
35	46-	46-	
36	$44_{p,\alpha}$	44,	
37		48 _p	$45_p, 48_p$
38	43 _p	$43_{p}, 46_{p}$	46,
39	49	49,	49 [°]
40	47 [°] _p	50 _p	50,

⁸⁰Kr was identified as a *key branching point*, for which the (γ, p) and (γ, α) reaction rates were found to be larger than the (γ, n) rate – NON-SMOKER calculations with GLO model for γ SF & a shifted Fermi-gas model for NLD.

Contrary to NON-SMOKER calculations, TALYS calculations indicate the dominance of the ⁸⁰Kr(γ ,n) channel over the ⁸⁰Kr(γ ,p) and ⁸⁰Kr(γ ,\alpha) channels => ⁷⁸Kr production follows the path ⁸⁰Kr(γ ,n)⁷⁹Kr(γ ,n)⁷⁸Kr

Sensitivity of the astrophysics predictions to the nuclear input

The production of the ⁷⁸Kr via the path ⁸⁰Kr(γ ,n)⁷⁹Kr(γ ,n)⁷⁸Kr is increased by 54%, while the (γ ,n) destruction of ⁸⁰Kr is increased by a factor of 2.6 at *T* = 3 GK when using the D1M+QRPA γ Sf model comparative to the GLO γ SF model.

PHOTONUCLEAR REACTIONS

A. Zilges, D.L. Balabanski, J. Isaak, N. Pietralla, Prog. Part. Nucl. Phys. 122 (2022) 103903.

$$\sigma_{\gamma} = \sigma_{\gamma\gamma} + \sigma_{\gamma\gamma'} \longrightarrow f(E_{\gamma}) = \frac{1}{3(\pi\hbar c)^2} \cdot \frac{\sigma_{\gamma}}{E_{\gamma}}$$

Parity and Spin Measurements with a Linearly Polarized Photon Beam

N. Pietralla, at al. PRL 88 (2002) 012502; A. Tonchev, NIM B 241 (2005) 51474

γ-ray beam parameters	Values
Energy	1 – 100 MeV
Linear & circular polarization	> 95%
Intensity with 5% AE /E	> 10 ⁷ v/s

For more details see: http://www.tunl.duke.edu/higs/

How HIyS Works: Laser Compton Backscattering (LCB)

VEGA @ ELI-NP (Romania); under implementation

(estimated to become available in 2026)

 $E_{\gamma} = 10 \text{ MeV}$

NRF Experimental Setup at HyGS

Target gas cell and target holder

Photon Beam Energies (MeV) for our NRF measurements:

6.40, 6.65, 6.95, 7.20, <mark>7.28</mark>, 7.50, 7.80, 8.15, 8.45, **8.80**, <mark>8.92</mark>, 9.15, **9.55**, 9.95, **10.35, 10.75, 11.20**

 $S_n(^{78}Kr) = 12.1 \text{ MeV}$

 $S_{n}(^{80}Kr) = 11.5 MeV$

120 8.92 MeV @ ¹¹B(γ,γ') 7.28 MeV @ $^{11}B(\gamma,\gamma')$ 150 100 100 Counts Counts 60 50 20 · 7500 5000 5500 6500 clover_back.amplitude[13] 7000 8000 9000 clover_back.amplitude[13]

Energy calibration (⁵⁶Co & ¹¹B)

Photon beam flux measurement

⁷⁸Kr run (summer of 2022) - Photon Flux comparison

Mirror Paddle detector
 Au foil

⁸⁰Kr NRF measurements (July 2023)

Data analysis in progress: stay tuned

Photoneutron reaction cross section measurements on ⁹⁴Mo and ⁹⁰Zr relevant to the *p*-process nucleosynthesis

A. Banu^{*} and E. G. Meekins[†]

Department of Physics and Astronomy, James Madison University, Harrisonburg, Virginia 22807, USA

J. A. Silano[‡] and H. J. Karwowski

Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, USA

S. Goriely

Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Campus de la Plaine, CP-226, 1050 Brussels, Belgium

(Received 10 June 2018; revised manuscript received 19 December 2018; published 11 February 2019)

The photodisintegration cross sections for the ${}^{94}Mo(\gamma, n)$ and ${}^{90}Zr(\gamma, n)$ reactions have been experimentally investigated with quasi-monochromatic photon beams at the High Intensity γ -ray Source (HI γ S) facility of the Triangle Universities Nuclear Laboratory (TUNL). The energy dependence of the photoneutron reaction cross sections was measured with high precision from the respective neutron emission thresholds up to 13.5 MeV. These measurements contribute to a broader investigation of nuclear reactions relevant to the understanding of the *p*-process nucleosynthesis. The results are compared with the predictions of Hauser-Feshbach statistical model calculations using two different models for the dipole γ -ray strength function. The resulting ${}^{94}Mo(\gamma, n)$ and ${}^{90}Zr(\gamma, n)$ photoneutron stellar reaction rates as a function of temperature in the typical range of interest for the *p*-process nucleosynthesis show how sensitive the photoneutron stellar reaction rate can be to the experimental data in the vicinity of the neutron threshold.

Acknowledgments

Research work for the 78,80 Kr(γ , γ') measurements is supported by the award no. DE-SC0021199

Research work for the ${}^{94}Mo(\gamma,n)$ and ${}^{90}Zr(\gamma,n)$ measurements was partially supported by the award no. 22662

The theoretical work for the ${}^{94}Mo(\gamma,n)$ and ${}^{90}Zr(\gamma,n)$ measurements was performed within the IAEA CRP on "Updating the Photonuclear Data Library and Generating a Reference Database for Photon Strength Functions" (F41032)

S. Goriely *et al.*, Eur. Phys. J. A55, 172 (2019): *Reference Database for Photon Strength Functions* T. Kawano *et al.*, Nucl. Data Sheets 163, 109 (2020): *IAEA Photonuclear Data Library 2019*

Thank you for your attention!