

Nucleon-Nucleus Optical Potentials for Soft Deformed Nuclei

Dmitry Martyanov*, Roberto Capote, Jose Manuel Quesada

*Joint Institute for Power and Nuclear Research – Sosny, Minsk, Belarus;

IAEA, Vienna

CNR*2024, July 2024, Vienna, IAEA

Coupled channels optical model

- Better target dynamics description → less is left for compound nucleus
- Essential for description of experimental data for deformed nuclides

Model components

- Dispersive Lane-consistent macroscopic potential:
 - Physically realistic
 - Better constrained
 - Describe more experimental data with single parameters set
- Nuclear structure model:
 - Description of low-energy collective excited states of a target – both rotational and vibrational (soft-rotator model)
 - Go beyond main rotational band
- Proper expansion of the deformed optical potential:
 - More details later

Are other bands important? (proton inelastic)

No nucleon scattering data for other-than-GS band in EXFOR for actinides

but there are clear evidences of levels from <u>other bands</u> in some proton inelastic scattering experimental works

Are other bands important? (²³⁸U neutron emission spectrum)

Also evidence of levels from <u>other bands</u>

Saturation of the coupling scheme

<u>Saturation</u> – predicted cross sections do not change upon addition of new levels

Along GS band to saturate we need:

- 6 levels for even-even
- 11 levels for odd

But what about other bands?

F. S. Dietrich et al., Phys. Rev. C 85, 044611 (2012)

Is softness important?

GS band levels energies deviate from rigid rotor level sequence for high spins due to nuclear stretching form centrifugal forces.

Soft-rotor model describes experimental energies and other bands as well.

Coupled channels for soft deformed nuclei

Taylor expansion near sphere

Explicit deformations \rightarrow vibrations bad convergence for big deformations Static multipolar expansion

Good convergence for big static deformations no explicit deformations \rightarrow no vibrations!

But actinides are both considerably deformed in GS and soft for vibrations

Theory

Optical potential for soft deformed nuclei

Solution: Taylor expansion near axial static form

$$R_{i}(\theta', \varphi') = R_{0i} \left\{ 1 + \sum_{\lambda=2,3; even \mu} \beta_{\lambda\mu} Y_{\lambda\mu}(\theta', \varphi') \right\}$$

$$= R_{i}^{zero}(\theta') + \delta R_{i}(\theta', \varphi'; \delta \beta_{2}, \gamma, \beta_{3}) \qquad \beta_{2} = \beta_{20} + \delta \beta_{2}$$

$$(\delta \beta_{2}), (\beta_{20}\gamma), (\beta_{3}) \ll \beta_{20}$$

$$= R_{0i} \left\{ 1 + \sum_{\lambda=2,4,6} \beta_{\lambda 0} Y_{\lambda 0}(\theta') \right\}$$

$$+ R_{0i} \left\{ \beta_{20} \left[\frac{\delta \beta_{2}}{\beta_{20}} \cos \gamma + \cos \gamma - 1 \right] Y_{20}(\theta') + \frac{(\beta_{20} + \delta \beta_{2}) \sin \gamma}{\sqrt{2}} [Y_{22}(\theta', \varphi') + Y_{2-2}(\theta', \varphi')] + \beta_{3} Y_{30}(\theta') + \beta_{00} Y_{00} + \beta_{10} Y_{10} \right\}$$
Near axially deformed

Potential expansion near axially deformed shape

 $V(r, R(\theta', \varphi'))$ $\approx V(r, R^{zero}(\theta')) + \frac{\partial}{\partial R} V(r, R(\theta', \varphi')) \bigg|_{R^{zero}(\theta')} \delta R(\theta', \varphi'; \delta \beta_2, \gamma, \beta_3)$ $\approx V(r, R^{zero}(\theta')) + \frac{\nu_2(r)}{R_0\beta_{20}} \delta R(\theta', \varphi'; \delta\beta_2, \gamma, \beta_3)$ $R_{zero}(\theta') = R_{0i} \left\{ 1 + \sum_{\lambda=2,4,6} \beta_{\lambda 0} Y_{\lambda 0}(\theta') \right\}$ **Rigid rotor** Softness $\nu_2(r) = 2\pi \int_{-\pi}^{\pi} V(r, R^{zero}(\theta')) Y_{20}(\theta') \sin \theta' d\theta'$

E.S. Soukhovitskiĩ et al, PRC 94 (2016) 64605

Coupled channels matrix elements

 $\langle i|V(r,\theta,\varphi)|f\rangle$

$$= \sum_{K}^{l} \sum_{K'}^{l'} A_{K}^{l' \tau} A_{K'}^{l' \tau'} \left\{ \sum_{\lambda=0,2,4,\dots} v_{\lambda}(r) \langle IK || D_{;0}^{\lambda} || I'K \rangle A \left(ljI; l'j'I'; \lambda J \frac{1}{2} \right) \delta_{KK'} \quad \text{Rigid rotor} \right.$$

$$+ v_{2}(r) \left\{ \left[[\boldsymbol{\beta}_{2}]_{eff} + [\boldsymbol{\gamma}_{20}]_{eff} \right] \langle IK || D_{;0}^{2} || I'K \rangle A \left(ljI; l'j'I'; 2J \frac{1}{2} \right) \delta_{KK'} \quad \boldsymbol{\beta} \text{- and } \boldsymbol{\gamma} \text{-vibrations} \text{ and stretching} \right.$$

$$+ [\boldsymbol{\gamma}_{22}]_{eff} \langle IK || D_{;2}^{2} + D_{;-2}^{2} || I'K \rangle A \left(ljI; l'j'I'; 2J \frac{1}{2} \right) \quad K = 2 \text{ band coupling}$$

$$+ [\boldsymbol{\beta}_{3}]_{eff} \langle IK || D_{;0}^{3} || I'K \rangle A \left(ljI; l'j'I'; 3J \frac{1}{2} \right) \delta_{KK'} \quad \text{Octupole coupling}$$

$$+ [\boldsymbol{\beta}_{0}]_{eff} \delta_{KK'} \delta_{II'} \delta_{jj'} \delta_{ll'} + [\boldsymbol{\beta}_{1}]_{eff} \langle IK || D_{;0}^{1} || I'K \rangle A \left(ljI; l'j'I'; 1J \frac{1}{2} \right) \delta_{KK'} \right\}$$

Volume and center-of-mass position conservation corrections

Effective deformations

$$[\beta_{2}]_{eff} = \langle n_{i}(\beta_{2}) \left| \frac{\delta \beta_{2}}{\beta_{20}} \right| n_{f}(\beta_{2}) \rangle$$

$$[\beta_{3}]_{eff} = \langle n_{i}(\beta_{3}) \left| \frac{\beta_{3}}{\beta_{20}} \right| n_{f}(\beta_{3}) \rangle$$

$$[\gamma_{20}]_{eff} = \langle n_{i}(\gamma) | \cos \gamma - 1 | n_{f}(\gamma) \rangle$$

$$[\gamma_{22}]_{eff} = \langle n_{i}(\gamma) \left| \frac{\sin \gamma}{\sqrt{2}} \right| n_{f}(\gamma) \rangle$$

$$[\beta_{2}^{2}]_{eff} = \langle n_{i}(\beta_{2}) \left| \frac{\delta \beta_{2}^{2}}{\beta_{20}^{2}} \right| n_{f}(\beta_{2}) \rangle$$

$$[\beta_{3}^{2}]_{eff} = \langle n_{i}(\beta_{3}) \left| \frac{\beta_{3}^{2}}{\beta_{20}^{2}} \right| n_{f}(\beta_{3}) \rangle$$

$$[\beta_{0}]_{eff} = -\frac{\beta_{20}}{\sqrt{4\pi}} \Big[2[\beta_{2}]_{eff} + [\beta_{2}^{2}]_{eff} + [\beta_{3}^{2}]_{eff} \Big]$$

$$[\beta_{1}]_{eff} = -\frac{\beta_{20}}{\sqrt{4\pi}} \sqrt{\frac{3}{7}} [\beta_{3}]_{eff} \Big[\frac{9}{\sqrt{5}} + \frac{4\beta_{40}}{\beta_{20}} \Big]$$

Effective deformations are defined by collective nuclear wavefunctions

Volume conservation term

Compensation term

Incompressible nuclear matter: V = V'

$$\beta_{00} = -\frac{\sum \beta_{\lambda}^2}{\sqrt{4\pi}}$$

Center-of-mass immobility term

Approaches to effective deformations

Effective deformations as fitting parameters

- Rough model to keep minimal number of parameters, only multiband coupling accounted (rigid rotor coupling within each band)
- One coupling param. per band
- Ambiguous description for nuclides with poor experimental data
- No additional knowledge needed

Calculation based on structure Hamiltonian

- Nuclear structure model for soft deformed nuclei is needed
- More consistent result
- Gives all model effects

For even-even nuclides using SRM:

E.S. Soukhovitskiĩ et al, PRC 94 (2016) 64605

D. Martyanov et al, EPJ Web Conf. 146 (2017) 12031 (ND2016)

Towards odd nuclides

We have soft-rotator model for even-even actinides, but no appropriate nuclear model (describing softness) for odd-A ones...

- Nuclear softness collective effect, determined mainly by the even-even core, and varies smoothly from nucleus to nucleus
- $\langle \psi_{odd} | \beta | \psi_{odd} \rangle \approx \langle \psi_{core} | \beta | \psi_{core} \rangle$
- We may try to couple levels for bands built on singleparticle state same as in GS
- We need to build appropriate core states

Odd-A matrix elements

- $|\psi_{odd}\rangle \sim \varphi_{sp} |\psi_{even \, core}\rangle$ no particle-core interaction
- $\langle \psi_{odd} | \beta | \psi'_{odd} \rangle \approx \langle \psi_{core} | \beta | \psi'_{core} \rangle$, if $\varphi_{sp} = \varphi'_{sp}$
- $\langle \psi_{odd} | \beta | \psi'_{odd} \rangle \approx 0$, if $\varphi_{sp} \neq \varphi'_{sp}$

Core states assignment (²³³U states from ENSDF)

GS band

Core state: no vibrational excitation, only rotation

Core state: first octupole excitation, rotation

Octupole band

Regional potential for actinides

Algorithm,

coupling schemes,

parameters, etc.

²³⁸U coupling scheme

²³³U coupling scheme

Calculation algorithm

Exp. data

Fitting parameters

- Nuclear softness and non-axiality (all soft-rotator model parameters) – from level structure, missing levels for coupling can be restored for even-even
- Many experimental data <u>for optical model</u> (²³⁸U and ²³²Th) – fit optical potential parameters and deformations
- Scarce experimental data (²³³U, ²⁴⁰Pu...) fit only deformations ($\beta_{20}, \beta_{30}, \beta_4, \beta_6$) with fixed potential
- Only strength functions or nothing available (²⁴⁶Cm...) take deformations from global nuclear mass models, no additional fitting or only β_{20} fit to reproduce SF

WS4 deformations work better than **FRDM2012** for eveneven actinides!

Comparison with other potentials

CN XS changes up to 0.3 barn between models fitted to the same data

238U

233U

Softness effects

- Multiband coupling (for bands, corresponding to collective excitations)
- Nucleus stretching due to rotation (centrifugal forces)
- Additional monopole coupling due to account of volume conservation in vibrating nucleus

Multiband coupling: Direct level excitation XS

Other bands' impact is comparable to one from 2nd/3rd excited GS band level

²³⁸U

233U

Multiband coupling: CN XS change due to bands removal

Large impact of β -vibrational states in the coupling scheme

²³⁸U

233U

Nucleus stretching: CN XS change

Nucleus stretching gives large impact even then only GS-band levels are coupled

Volume and center-of-mass position corrections: CN XS change

Volume conservation may be considered, center-of-mass correction is small

²³⁹Pu: direct level excitation

Other bands' impact is comparable to one from 2nd/3rd excited GS band level

²³⁵U and ^{235m}U: change of CN cross section

Only one band coupled for ²³⁵U but softness is still important Isomeric state has other coupled levels \rightarrow cross section changed

²⁴¹Pu: total CS

We fit only β_2 to reproduce S₀ value, but scarce URR total CS is fairly reproduced

Summary

- Extended coupling is important for optical model calculations in even-even and odd-A actinides
- Obtained CCOMP for actinides:
 - Dispersive and Lane-consistent
 - Coupling to levels from multiple bands
 - Softness important even when single band is coupled
 - Saturation for even-even nuclei
 - Account of quadrupole triaxiality, octupole shape, volume and center-of-mass conservation

Thank you for the attention!

Software

All calculations performed by two FORTRAN codes which have been being developed by E. Soukhovitskii and coworkers for many years:

- optical model code OPTMAN (optical potential fitting, cross-section calculations) with dispersive corrections as discussed with Quesada, Capote, Chiba et al.
- nuclear structure code SHEMMAN (soft-rotator model parameters fitting and levels prediction)

OPTMAN

New model implementation is validated by comparison with FRESCO

- recommended to use for SRM potentials compiled in the IAEA reference input parameter library (RIPL-3) for nuclear data evaluation
- used with the EMPIRE nuclear reaction model code for basic research and nuclear data evaluation (e.g. recent Fe-56 CIELO evaluation)

RIPL-3: Capote, R. et al., Nucl. Data Sheets 110, 3107–3214 (2009) OPTMAN and SHEMMAN: E. Sh. Sukhovitski et al., JAERI-Data/Code 2005-002 (2005) Dispersive corrections: Soukhovitski, E. Sh. et al, JAEA-Data/Code--2008-025 (2008) Soft description of Fe56: W. Sun et al, Nucl. Data Sheets 118, 191-194 (2014)

Soft rotator model

 $\widehat{H} = \frac{\hbar^2}{2B} \left\{ \widehat{T}_{\beta_2} + \frac{1}{\beta_2^2} \widehat{T}_{\gamma} \right\} + \frac{\hbar^2}{2} \widehat{T}_r + \frac{\hbar^2}{2B_3} \widehat{T}_{\beta_3} + \frac{\beta_{20}^4}{\beta_2^2} V(\gamma) + V(\beta_2) + V(\beta_3)$

Comparison with other potentials 2

OMP figure of merit: symmetrized total XS ratio for different nuclei

 $R(A,B) = \frac{1}{2} \frac{\sigma_A - \sigma_B}{\sigma_A + \sigma_B}$

Many other data is fitted: total XS, (in)elastic angular distributions, (p,n), strength functions and scattering radii

²³²Th to ²³⁸U

Poenitz 1981

Poenitz 1983

10²

model

2408

10¹

