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Introduction Photon strength function

In the statistical model of v decay, the photon strength function (PSF), f (XL) ' determines the partial radiative The individual PSF values f; are obtained from probabilities of transitions as

width I';, ¢ from the initial level 7 to the final level f as
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: : : : it the ¢ and f indices for the sake of clarity.
where D= is the average spacing for given Ji in the vicinity of the initial level and the factors xp reflect we omit the ¢ and f indices for the sake of clarity

the fluctuations of I';y¢ or the individual PSF values, fl(XL). These fluctuations are assumed to follow the o individual values are expected to fluctuate according to Porter-Thomas distribution, see Eq. (1)
Porter-Thomas distribution. The summation goes over all allowed types X and multipolarities L of transition
connecting the initial and final level. In practice the decay of highly excited levels is usually dominated by
dipole transitions, /1 or M1, with the only possible relevant mixed transition being M1 + E2. For the sake %

of clarity we omit the X L labeling hereafter.

= to obtain the mean PSF value we need to average

only handful of transitions in relatively wide, high-energy ~-ray interval
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The °°Fe(nyy,, ) was measured at Cold neutron PGAA facility at Budapest [4] and thermal neutron two-step i Q§ A
v cascade (TSC) facility at Rez |[5]. The singles spectrum from Budapest was used to get intensity values, i
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Figure 6: PSF deduced from intensities of primary transitions as a function of v-ray energy. The black dashed
line corresponds to the threshold in Fig. 4.

To convert probabilities of primary transitions to PSF values, we have used D j~ = Dy = 22.0(17) keV and
I';, = 1474meV from Mughabghab’s atlas [3]. The resonance that dominantly contributes to the thermal
capture is the bound state according to Mughabghab, hence the choice of I';,.

The average total radiative width is quoted as 900(470) meV therein. The uncertainty probably reflects the
expected significant fluctuations of I';y in such a light nucleus, see Fig. 7.

In any case, the value of I';, does not influence the shape of deduced PSF.

The integrated T'SC data can be used for comparison with DICEBOX simulations under different assumptions.
The sensitivity is limited because of sizable P-T fluctuations when intensities of primaries are not taken from
experiment, see Fig. 8.

Figure 3: The TSC gamma coincidence facility at
LWR-15 research reactor, NPI CAS Rez at the time
of measurement in 2005.

Figure 2: The PGAA apparatus at Budapest Neutron
Center. The photo was taken from https://www.iperi-

onhs.eu/tool/70/.

Intensities of transitions
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Results

Models
Voinov PSF was extracted from probabilities of pri-

According to DICEBOX simulations, missing transition probability is > P, ~ 0.3% for primary transitions, .
mary transitions

and > P, ~ 0.47% for feeding of GS + 14 keV levels assuming the constant threshold of 10~* shown in
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