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Statistical reactions and Hauser-Feshbach calculations

• Hauser-Feshbach (HF) theory describes compound-nuclear reactions that 
involve statistical averages over overlapping resonances

• HF calculations are essential component of nuclear data evaluations
• Applications rely on cross sections calculated with HF, e.g. neutron capture

Jutta Escher, escher1@llnl.gov
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Predictive power of HF reaction calculations is limited…
… this provides an opportunity for more sophisticated theory and indirect reaction methods

§ Challenges:
— Ambiguous model combinations, large 

parameter uncertainties, and multiple 
reaction channels

— Away from stability there are few/no known 
constraints

§ Needed – a multipronged approach:
— development of predictive microscopic 

structure and reaction theories
— direct measurements (where possible) to 

validate theory 
— indirect measurements to constrain theory

Formation of CN

Probability for decay of CN
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Indirect measurements using the
Surrogate Reactions Method

• Concept
• (p,d) as a surrogate reaction mechanism
• (d,p) as a surrogate reaction mechanism
• Inelastic scattering as a surrogate reaction mechanism
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Surrogate reactions method combines theory and experiment to 
constrain cross section calculations for compound reactions 

Producing a CN in a surrogate reaction:
• Starts with a ‘direct’ reaction to produce a 

‘doorway state’ at Eex > several MeV
• Doorway evolves into a CN
• Spin population of doorway state = spin 

population of the CN

isotopic chart, taking place at energies from several keV to
tens of MeV, are required for nuclear astrophysics, national
security, and nuclear-energy applications. Not all relevant
data can be directly measured in the laboratory or easily
determined by calculations.

Direct measurements may encounter a variety of difficul-
ties: The energy regime relevant for a particular application is
often inaccessible: cross sections for charged-particle reac-
tions, e.g., become vanishingly small as the relative energy of
the colliding nuclei decreases. For astrophysical purposes,
such as descriptions of stellar environments and evolution,
reaction rates at energies below 100 keV are needed.
Furthermore, many important reactions involve unstable nu-
clei which are too difficult to produce with currently available
techniques or are too short lived to serve as targets in present-
day setups. Producing all relevant isotopes will remain chal-
lenging even for radioactive-beam facilities.

Cross section calculations are nontrivial since they often
require a thorough understanding of both direct and statistical
reaction mechanisms (as well as their interplay) and a de-
tailed knowledge of nuclear structure. Nuclear-structure mod-
els can provide only limited information and little is known
about optical-model potentials, level densities, and spectros-
copy relevant to nuclei outside the valley of stability.

To overcome these limitations, several indirect methods
have been employed in recent years. Approaches such as the
ANC (asymptotic normalization coefficient) method (Xu
et al., 1994; Azhari et al., 1999; Gagliardi et al., 1999;
Mukhamedzhanov, Gagliardi, and Tribble, 2001; Timofeyuk,
Johnson, and Mukhamedzhanov, 2003; Timofeyuk and
Descouvemont, 2005), Coulomb dissociation (Baur,
Bertulani, and Rebel, 1986; Baur and Rebel, 1996; Baur,
Hencken, and Trautmann, 2003), and the Trojan-horse
method (Baur, 1986; Typel and Baur, 2003; Wolter and
Typel, 2003; Baur and Typel, 2004; Pizzone and Spitaleri,
2008) have yielded valuable cross section information for
various direct reactions. These methods focus on direct re-
actions, i.e., fast reactions (time scale ! 10"22 sec ) that
involve simple rearrangements of the constituents of the
target and projectile nuclei.

The present review focuses on a complementary method,
the surrogate nuclear reaction method, which aims at deter-
mining reaction cross sections for compound-nuclear reac-
tions that involve difficult-to-produce targets. In a compound
reaction, target and projectile nuclei combine to form a highly
excited, intermediate system, the compound nucleus, which
subsequently decays. The reaction proceeds on a relatively
slow time scale (# 10"22 sec ), as the formation of a com-
pound nucleus involves the excitation of many degrees of
freedom. Apart from observing the constraints of basic con-
servation laws (energy, angular momentum), the formation
and decay of a compound nucleus are considered to be
independent of each other in first order (‘‘Bohr hypothesis’’);
this independence is exploited in the surrogate-reaction ap-
proach. To obtain experimental information on the decay of
the compound nucleus (B$) occurring in the reaction of
interest (aþ A ! B$ ! cþ C), this nucleus is produced
via an alternative, ‘‘surrogate’’ reaction (dþD ! B$ þ b)
that involves a projectile-target combination (dþD) that is
experimentally more accessible (see Fig. 1). The decay of B$

is observed in coincidence with the outgoing direct-reaction
particle b. The measured compound-nuclear decay probabil-
ities can then be combined with calculated formation cross
sections for the compound nucleus in the desired reaction to
yield the relevant reaction cross section.

Originally introduced in the 1970s (Cramer and Britt,
1970a; Britt and Wilhelmy, 1979), the surrogate approach
has recently received renewed attention (Younes and Britt,
2003b; 2003c; Petit et al., 2004; Boyer et al., 2006; Burke
et al., 2006; Escher and Dietrich, 2006; Escher et al., 2007;
Jurado et al., 2008; Escher and Dietrich, 2010; Kessedjian
et al., 2010). A sizable number of surrogate experiments
aimed at obtaining ðn; fÞ cross sections has been carried out
over the years, and recent efforts have also considered ðn;!Þ
cross sections. In principle, the method can also provide
information about the charged-particle or two-neutron exit
channels, or for reactions induced by charged particles, but, to
date, little effort has been devoted to those cases.

In this paper, we review the present status of the surrogate
method. In Sec. II, we have compiled representative examples
from the areas of nuclear astrophysics, nuclear energy, and
national security to illustrate the importance of cross sections
for reactions on unstable targets for a wide variety of appli-
cations. The surrogate idea and formalism are detailed in
Sec. III. The majority of the surrogate experiments carried
out so far have focused on ðn; fÞ cross sections. The early
work, carried out in the 1970s, is summarized in Sec. IV, and
the more recent experiments are reviewed in Sec. V. We

FIG. 1 (color online). Schematic representation of the desired (top)
and surrogate (bottom) reaction mechanisms. The basic idea of the
surrogate approach is to replace the first step of the desired reaction,
aþ A, by an alternative (surrogate) reaction,dþD ! bþ B$, that is
experimentally easier to access yet populates the same compound
nucleus. The subsequent decay of the compound nucleus into the
relevant channel, cþ C, can then be measured and used to extract the
desired cross section. Three typical decay channels are shown here:
neutron evaporation, fission, and ! emission.

354 Jutta E. Escher et al.: Compound-nuclear reaction cross sections from . . .

Rev. Mod. Phys., Vol. 84, No. 1, January–March 2012

Observe the decay of the CN:
• Measure coincidence probability of outgoing surrogate 

particle with decay into channel of interest
• Model HF decay and fit parameters to measured 

surrogate probability

Escher et al, RMP 84, 353 (2012)

Obtain desired cross section:
• Calculate desired reaction cross section using inferred 

parameters
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• Concept
• (p,d) as a surrogate reaction mechanism
• (d,p) as a surrogate reaction mechanism
• Inelastic scattering as a surrogate reaction mechanism
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Surrogate reactions method for neutron capture
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*Width fluctuation corrections are omitted 
here, but accounted for in applications.

Escher et al, PRL 121, 052501 (2018)
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Theory for surrogate reactions:
Parameter constraints from Bayesian fit to decay observables

Spin-parity population from 
direct-reaction theory 

Surrogate coincidence probabilities

P(p,dg) (E) = SJ,p F(p,d)CN(E,J,p).GCN
g(E,J,p)

encompasses the latter within its 1σ uncertainty. The result
is a significant improvement over previous attempts to
determine capture cross sections from surrogate reaction
data and is notable since it is achieved for an isotope that is
very sensitive to spin-parity effects [26].
To summarize, we have presented a new approach for

determining neutron-capture cross sections for unstable
isotopes using a combination of surrogate reaction data
and theory. We have demonstrated that a theoretical descrip-
tion of the surrogate reaction is key to overcoming the
limitations encountered in previous applications of this
approach. The method makes no use of auxiliary con-
straining quantities, such as neutron resonance data, or
average radiative widths, which are not available for
short-lived isotopes. This approach will open up the pos-
sibility of determining unknown cross sections, with far-
reaching implications for improving our understanding of
stellar evolution and nucleosynthesis of the heavy elements:
near stability, stable-beam experiments can be used to
determine cross sections that shed light on the slow
neutron-capture process (s process) [66], while further away
from stability, radioactive beam experiments can provide
reaction data relevant to rapid-neutron-capture (r process)
nucleosynthesis [67].
Our approach of predicting FCN

δ and determining the
unknown decay parameters from Eq. (2) can be adapted to
determine other cross sections of interest. For example,
proton and α capture can be treated in direct analogy to the
cases presented here. Furthermore, other surrogate reaction
mechanisms can be used to form the CN, including
inelastic scattering and reactions that transfer nucleons to

the target: for the (d, p) reaction, a prime candidate for
inverse-kinematic experiments, a reaction description has
recently been developed [68–70] and surrogate benchmark
tests are underway [17,71]. Thus, the present work estab-
lishes a more general procedure for obtaining cross sections
for short-lived nuclei from light-ion surrogate reactions.

We recognize the multiple contributions our friend and
collaborator Cornelius Beausang made to this effort. We
thank M. Dupuis, T. Bailey, B. Beck, A. C. Dreyfuss,
R. Soltz, I. J. Thompson, C. Tong, and M. A. E. Williams
for valuable discussions and A. Koning for the TENDL
comparison data. This work was performed under the
auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-
07NA27344.

*Corresponding author.
escher1@llnl.gov
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FIG. 5. Results for Zr. (a)–(e) Coincidence probabilities used in the fit. (f) The extracted 90Zrðn; γÞ cross section is compared to direct
measurements and several evaluations [25,62–65]. The Forssen calculation usedD0 and hΓγi data, which are typically used—along with
cross section data–to constrain (n, γ) calculations. TENDL (shown with hatched uncertainty band) and ENDF introduced further
adjustments to agree more closely with the direct data.

PHYSICAL REVIEW LETTERS 121, 052501 (2018)

052501-5

92Zr(p,dg) – 
Bayesian fit to 
surrogate data

Coincidence probabilities 
from surrogate experiment

Escher et al, PRL 121, 052501 (2018)
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Surrogate (p,d) transfer reactions enable determination of 
unknown (n,g) cross sections - benchmark 90Zr(n,g)

Procedure
Ø Measure the surrogate reaction coincidence probability
Ø Calculate the spin-parity population of the doorway state = spin-parity of the CN
Ø Model CN decay and perform Bayesian parameter fit to surrogate coincidence probabilities
Ø Sample posterior HF parameter distributions to obtain neutron-capture cross section

encompasses the latter within its 1σ uncertainty. The result
is a significant improvement over previous attempts to
determine capture cross sections from surrogate reaction
data and is notable since it is achieved for an isotope that is
very sensitive to spin-parity effects [26].
To summarize, we have presented a new approach for

determining neutron-capture cross sections for unstable
isotopes using a combination of surrogate reaction data
and theory. We have demonstrated that a theoretical descrip-
tion of the surrogate reaction is key to overcoming the
limitations encountered in previous applications of this
approach. The method makes no use of auxiliary con-
straining quantities, such as neutron resonance data, or
average radiative widths, which are not available for
short-lived isotopes. This approach will open up the pos-
sibility of determining unknown cross sections, with far-
reaching implications for improving our understanding of
stellar evolution and nucleosynthesis of the heavy elements:
near stability, stable-beam experiments can be used to
determine cross sections that shed light on the slow
neutron-capture process (s process) [66], while further away
from stability, radioactive beam experiments can provide
reaction data relevant to rapid-neutron-capture (r process)
nucleosynthesis [67].
Our approach of predicting FCN

δ and determining the
unknown decay parameters from Eq. (2) can be adapted to
determine other cross sections of interest. For example,
proton and α capture can be treated in direct analogy to the
cases presented here. Furthermore, other surrogate reaction
mechanisms can be used to form the CN, including
inelastic scattering and reactions that transfer nucleons to

the target: for the (d, p) reaction, a prime candidate for
inverse-kinematic experiments, a reaction description has
recently been developed [68–70] and surrogate benchmark
tests are underway [17,71]. Thus, the present work estab-
lishes a more general procedure for obtaining cross sections
for short-lived nuclei from light-ion surrogate reactions.

We recognize the multiple contributions our friend and
collaborator Cornelius Beausang made to this effort. We
thank M. Dupuis, T. Bailey, B. Beck, A. C. Dreyfuss,
R. Soltz, I. J. Thompson, C. Tong, and M. A. E. Williams
for valuable discussions and A. Koning for the TENDL
comparison data. This work was performed under the
auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-
07NA27344.

*Corresponding author.
escher1@llnl.gov
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FIG. 5. Results for Zr. (a)–(e) Coincidence probabilities used in the fit. (f) The extracted 90Zrðn; γÞ cross section is compared to direct
measurements and several evaluations [25,62–65]. The Forssen calculation usedD0 and hΓγi data, which are typically used—along with
cross section data–to constrain (n, γ) calculations. TENDL (shown with hatched uncertainty band) and ENDF introduced further
adjustments to agree more closely with the direct data.

PHYSICAL REVIEW LETTERS 121, 052501 (2018)
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Surrogate 
method does not 
use D0 or <Gg> 

Escher et al, PRL 121, 052501 (2018)
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The surrogate reactions method also yields experimentally-constrained 
level densities and g-ray strength functions

Extracted E1, M1 strengths

Extracted D0 and <Gg> values
D0 [keV] Reference

10 This work

6.89 (0.53) Mughabghab, 
2006

6.00 (1.40) RIPL-3

7.18 (23) Guttormsen, 
PRC 2017

<Gg> [meV] Reference

185 This work

170 (20) Mughabghab, 
2006

130 (40) RIPL-3

180 (137)
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Guttormsen, 
PRC 2017

Oslo data from:
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Surrogate (p,d) transfer reactions enable determination of 
unknown (n,g) reaction cross sections involving isomers

Multiple isomers occur in the unstable Y isotopes

Focus on creation and destruction of 88Y by 
neutron-induced reactions

106.65 d

15.7 s  909.0 keV0.3 ms 392.9 keV13.4 h    380.8 keV

79.8 h stable
87Y 88Y 89Y

13.9 ms 674.6 keV

Complicated system with many short-lived isotopes/isomers…

… two reactions identified as particularly important: 
88Y(n,2n) & 87Y(n,g)

(n,2n)(n,g)

1+

8+

4-

9/2+ 9/2+

1/2- 1/2-
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87Y(n,g) cross sections from 89Y(p,dg) surrogate reaction data

Procedure analogous to Zr(p,d) case

contributions are added to this and the resulting distribution
is used in a Hauser-Feshbach-type calculation that models
the CN decay.
With FCN

δ ðEex; J; πÞ obtained in this manner, we can
derive constraints for the decay models, using the measured
coincidence probabilities Pexpt

δγ and Eq. (2). We express the
GCN

γ ðEex; J; πÞ in terms of well-established functional
forms for level densities and transmission coefficients
[20,52], with parameters that are to be determined.
Sensitivity studies establish reasonable parameter ranges:
the level density model [53] used has four (five) adjustable
parameters for 88Y (91Zr). The γ-ray transmission coeffi-
cient is dominated by electric and magnetic dipole tran-
sitions, requiring nine parameters to be varied [52,54–56].
The neutron transmission coefficients are known quite
accurately for the nuclei considered [36] and are not varied.
For isotopes far from stability, where transmission coef-
ficients are less well known, such variations should be
carried out. To account for uncertainties in the calculated
FCN
δ ðEex; J; πÞ, we vary the weights schematically by

shifting the overall distribution by #1ℏ.
Each parameter set leads to predicted coincidence

probabilities according to Eq. (2). A comparison with
the measured probabilities then leads to the sought-after
parameter constraints. In practice, this comparison is
carried out using a Bayesian Monte Carlo approach
[57,58], which allows us to simultaneously account for
uncertainties in the data, the structure information utilized,
and shortcomings in the theoretical description. The pro-
cedure yields the desired (n, γ) cross section, along with its
uncertainty.
Six γ-ray transitions in 88Y are used to determine the 88Y$

decay parameters. To emphasize the energy region of
interest to neutron capture, data from 0.5 MeV below to

1.5 MeV above the neutron separation energy are utilized.
Data at lower energies serve as a check for the quality of the
approach. Figures 3(a)–3(f) show that all transitions are
simultaneously well reproduced, even at the lower energies.
The effects of the IAS are clearly seen and reproduced. As
an additional check, we compare a predicted and measured
γ-ray transition in 87Y [see Fig. 3(g)]. The extracted
87Yðn; γÞ cross section, shown in Fig. 4, is higher than
existing evaluations, which rely on regional systematics,
and has a 1σ uncertainty of about #25%.
For the 90Zrðn; γÞ case, we use five γ transitions and,

again, restrict our fit to data around the separation energy
(Sn ¼ 7.19 MeV). The fit reproduces the data well in the
energy range of interest (Fig. 5). The resulting 90Zrðn; γÞ
cross section, shown in (f), agrees with available direct
measurements and evaluations, both in shape and magni-
tude. Its average is about a factor 2 larger than the data, but

FIG. 3. Probabilities for observing specific γ-ray transitions in coincidence with the outgoing deuteron. Results of the fit (gray 1σ
bands) are compared to experimental data (black symbols). Fitting range and separation energy Sn are indicated. (a)–(f) Transitions in
88Y; (g) gives a transition in 87Y. IAS contributions result in dips or peaks at specific energies.

FIG. 4. The 87Yðn; γÞ cross section, extracted from the surro-
gate data, with 1σ uncertainty (blue curves, gray band). The
TENDL 2015 (brown curves, with hatched 1σ uncertainty) and
Rosfond 2010 evaluations are based on regional systematics
[59–61]. No direct measurements exist.

PHYSICAL REVIEW LETTERS 121, 052501 (2018)

052501-4

Surrogate (p,dg) reaction

P(p,dg) (E) = SJ,p F(p,d)CN(E,J,p).GCN
g(E,J,p)

Escher et al, PRL 121, 052501 (2018)
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Results I: 87Y(n,g) cross sections from 89Y(p,dg) data
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Escher et al, LLNL Tech. Rep. (2019)



14
LLNL-PRES-xxxxxx

Results II: 87mY(n,g) cross sections from 89Y(p,dg) data
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• Concept
• (p,d) as a surrogate reaction mechanism
• (d,p) as a surrogate reaction mechanism
• Inelastic scattering as a surrogate reaction mechanism
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Surrogate reactions method for neutron capture - using g transitions

Etop

Eex

CN 
populatedCN 

reached by
n emission

Sn

Surrogate
reaction

g

n

96Mo

*Width fluctuation corrections are omitted 
here, but accounted for in applications.

n+95Mo
95Mo

d

p

A Surrogate experiment gives

  P(d,p’g) (E) = SJ,p F(d,p)CN(E,J,p).GCN
g(E,J,p)

95Mo (n,g) cross section*:

 s(n,g) = SJ,p sn+target
CN

 (E,J,p) . GCN
g(E,J,p)

From 
experiment

From 
theory

To be 
determined

Well modelled from 
nuclear theory

The new cross 
section we want
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Surrogate (d,p) transfer reactions enable determination of (n,g) cross sections - 
benchmark 95Mo(n,g) Ratkiewicz, Cizewski, JE, Potel, et al, PRL 122, 052502 (2019)

Spin-parity population from 
direct-reaction theory 

Surrogate coincidence probabilities

P(d,pg) (E) = SJ,p F(d,p)CN(E,J,p).GCN
g(E,J,p)

Coincidence probabilities 
from surrogate experiment
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Surrogate (d,p) transfer reactions enable determination of (n,g) cross sections - 
benchmark 95Mo(n,g)

Procedure
Ø Measure the surrogate reaction coincidence probability
Ø Calculate the spin-parity population of the doorway state = spin-parity of the CN
Ø Model CN decay and perform Bayesian parameter fit to surrogate coincidence probabilities
Ø Sample posterior HF parameter distributions to obtain neutron-capture cross section

Ratkiewicz, Cizewski, JE, Potel, et al, PRL 122, 052502 (2019)

Without 
theory
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• Concept
• (p,d) as a surrogate reaction mechanism
• (d,p) as a surrogate reaction mechanism
• Inelastic scattering as a surrogate reaction mechanism
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Using inelastic scattering as a surrogate mechanism provides new opportunities:
Determining (n,n’) and (n,2n) reaction cross sections

§ Opportunities:
— Unknown (n,n’) and (n,2n) reactions become 

accessible. Examples: 88Y(n,2n), 168Tm(n,2n)
— Obtain multiple desired reaction cross sections 

simultaneously
— Inverse-kinematics experiments at radioactive beam 

facilities

§ Challenges:
— Compound nucleus highly excited
— Multiple intermediate nuclei involved
— Non-statistical effects expected

91Zr*

g
n

90Zr*

g
n

89Zr*

g
n

Nucleus of interest
For 90Zr(n,2n) 

Surrogate reaction

3He3He’

91Zr
 stable

Nucleus of interest
For 90Zr(n,n’) 

Nucleus of interest
For 90Zr(n,g) 

90Zr(n,2n) cross section from inelastic scattering

Benchmark: 90Zr(n,2n) cross section is known
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Surrogate reactions method for (n,n’) and (n,2n)
The Zr case provides a benchmark for the method

91Zr

n+90Zr

2n+89Zr

Sn

S3n

S2n

Etop

Surrogate reaction

3He3He’

91Zr
 stable

§ Experiment provides:
— 91Zr(3He,3He’) ‘singles’ cross section as 

function of Eex and ejectile angle
— Coincidence probabilities          

P(3He,3He’)g(Eex) for g-transitions in 3 different 
nuclei

§ Theory must:
— Calculate 91Zr(3He, 3He’) ‘singles’ cross 

section and determine spin-parity 
population 

— Model 91Zr decay into 3 final nuclei and fit 
decay parameters

— Sample posterior HF parameter distribution 
and calculate desired cross sections

Surrogate data from N. Scielzo



22
LLNL-PRES-xxxxxx

Inelastic scattering enables determination of 90Zr(n,g), 90Zr(n,n’), 90Zr(n,2n)
Benchmark cross sections Escher et al., WIP (2024)

Spin-parity population from direct-reaction theory 

Surrogate coincidence probabilities

P(3He,3He’g) (E) = SJ,p F(3He,3He’)CN(E,J,p).GCN
g(E,J,p)

Coincidence probabilities 
from surrogate experiment
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Fits to gamma transitions in 91Zr → constrain LDs and gSF in 91Zr
Escher et al., WIP (2024)

Pre
lim

ina
ry

Pre
lim

ina
ry
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Neutron capture cross section from 91Zr(3He,3He’) surrogate data
compared to results from other indirect measurements

This work
(preliminary)

Guttormsen et al, PRC 2019
Oslo method, 92Zr(p,d)

Escher et al, PRL 2019
Surrogate method, 92Zr(p,d)

encompasses the latter within its 1σ uncertainty. The result
is a significant improvement over previous attempts to
determine capture cross sections from surrogate reaction
data and is notable since it is achieved for an isotope that is
very sensitive to spin-parity effects [26].
To summarize, we have presented a new approach for

determining neutron-capture cross sections for unstable
isotopes using a combination of surrogate reaction data
and theory. We have demonstrated that a theoretical descrip-
tion of the surrogate reaction is key to overcoming the
limitations encountered in previous applications of this
approach. The method makes no use of auxiliary con-
straining quantities, such as neutron resonance data, or
average radiative widths, which are not available for
short-lived isotopes. This approach will open up the pos-
sibility of determining unknown cross sections, with far-
reaching implications for improving our understanding of
stellar evolution and nucleosynthesis of the heavy elements:
near stability, stable-beam experiments can be used to
determine cross sections that shed light on the slow
neutron-capture process (s process) [66], while further away
from stability, radioactive beam experiments can provide
reaction data relevant to rapid-neutron-capture (r process)
nucleosynthesis [67].
Our approach of predicting FCN

δ and determining the
unknown decay parameters from Eq. (2) can be adapted to
determine other cross sections of interest. For example,
proton and α capture can be treated in direct analogy to the
cases presented here. Furthermore, other surrogate reaction
mechanisms can be used to form the CN, including
inelastic scattering and reactions that transfer nucleons to

the target: for the (d, p) reaction, a prime candidate for
inverse-kinematic experiments, a reaction description has
recently been developed [68–70] and surrogate benchmark
tests are underway [17,71]. Thus, the present work estab-
lishes a more general procedure for obtaining cross sections
for short-lived nuclei from light-ion surrogate reactions.

We recognize the multiple contributions our friend and
collaborator Cornelius Beausang made to this effort. We
thank M. Dupuis, T. Bailey, B. Beck, A. C. Dreyfuss,
R. Soltz, I. J. Thompson, C. Tong, and M. A. E. Williams
for valuable discussions and A. Koning for the TENDL
comparison data. This work was performed under the
auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-
07NA27344.

*Corresponding author.
escher1@llnl.gov
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FIG. 5. Results for Zr. (a)–(e) Coincidence probabilities used in the fit. (f) The extracted 90Zrðn; γÞ cross section is compared to direct
measurements and several evaluations [25,62–65]. The Forssen calculation usedD0 and hΓγi data, which are typically used—along with
cross section data–to constrain (n, γ) calculations. TENDL (shown with hatched uncertainty band) and ENDF introduced further
adjustments to agree more closely with the direct data.

PHYSICAL REVIEW LETTERS 121, 052501 (2018)
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Escher et al., WIP (2024)
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Simultaneous fit to gammas in 90Zr and 89Zr

91Zr

n+90Zr

2n+89Zr

Sn

S3n

S2n

Etop

Escher et al., WIP (2024)

Pre
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Pre
lim
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ry
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Simultaneous fit to gammas in 90Zr and 89Zr

91Zr

n+90Zr

2n+89Zr

Sn

S3n

S2n

Etop

Escher et al., WIP (2024)

Pre
lim

ina
ry
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90Zr(n,n') and (n,2n) cross sections from 91Zr(3He,3He’) data and theory

(preliminary)

Escher et al., WIP (2024)
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Actinides: 
Inelastic alpha scattering Pérez Sánchez et al, PRL 125, 122502 (2020)

§ Decay probabilities for fission and g emission 
measured in 240Pu(a,a’) experiment

§ Calculated Jp population using QRPA structure 
information in reaction description

§ Adjusted HF decay parameters to minimize c2

§ Obtained both 239Pu(n,g) and 239Pu(n,f)

From fit using 
calculated Jp

Using WE 
approximation
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Using inelastic scattering as a surrogate mechanism provides new opportunities:
Neutron capture on s-process branch points

Liddick, Aug 2016,  Slide 3

Goals

�Structure of the nucleus.
• Study nuclei at various 

neutron and proton numbers 
to determine validity of 
extrapolations

• Synthesis of elements 
heavier than iron.
– Provide input into 

theoretical models for 
timescale and 
abundance patterns of 
elemental synthesis

s process

N
um

be
r o

f p
ro

to
ns

Number of neutrons

95Zr 96Zr*

s-process path at branch point 95Zr
95Zr is unstable

n

153Gd 
unstable

154Gd

g

§ Experiments (Alan, Scielzo, et al): 
— 94,96Zr(p,p’) at Texas A&M, Ep = 21 MeV
— 154,156,158Gd(p,p’) at LBNL, Ep = 22 MeV

§ Theory (Thapa, Escher, et al)
— 1-step contributions
— 2-step contributions
— deformation



30
LLNL-PRES-xxxxxx

Spin-parity populations: Why they matter 
and how we calculate them

isotopic chart, taking place at energies from several keV to
tens of MeV, are required for nuclear astrophysics, national
security, and nuclear-energy applications. Not all relevant
data can be directly measured in the laboratory or easily
determined by calculations.

Direct measurements may encounter a variety of difficul-
ties: The energy regime relevant for a particular application is
often inaccessible: cross sections for charged-particle reac-
tions, e.g., become vanishingly small as the relative energy of
the colliding nuclei decreases. For astrophysical purposes,
such as descriptions of stellar environments and evolution,
reaction rates at energies below 100 keV are needed.
Furthermore, many important reactions involve unstable nu-
clei which are too difficult to produce with currently available
techniques or are too short lived to serve as targets in present-
day setups. Producing all relevant isotopes will remain chal-
lenging even for radioactive-beam facilities.

Cross section calculations are nontrivial since they often
require a thorough understanding of both direct and statistical
reaction mechanisms (as well as their interplay) and a de-
tailed knowledge of nuclear structure. Nuclear-structure mod-
els can provide only limited information and little is known
about optical-model potentials, level densities, and spectros-
copy relevant to nuclei outside the valley of stability.

To overcome these limitations, several indirect methods
have been employed in recent years. Approaches such as the
ANC (asymptotic normalization coefficient) method (Xu
et al., 1994; Azhari et al., 1999; Gagliardi et al., 1999;
Mukhamedzhanov, Gagliardi, and Tribble, 2001; Timofeyuk,
Johnson, and Mukhamedzhanov, 2003; Timofeyuk and
Descouvemont, 2005), Coulomb dissociation (Baur,
Bertulani, and Rebel, 1986; Baur and Rebel, 1996; Baur,
Hencken, and Trautmann, 2003), and the Trojan-horse
method (Baur, 1986; Typel and Baur, 2003; Wolter and
Typel, 2003; Baur and Typel, 2004; Pizzone and Spitaleri,
2008) have yielded valuable cross section information for
various direct reactions. These methods focus on direct re-
actions, i.e., fast reactions (time scale ! 10"22 sec ) that
involve simple rearrangements of the constituents of the
target and projectile nuclei.

The present review focuses on a complementary method,
the surrogate nuclear reaction method, which aims at deter-
mining reaction cross sections for compound-nuclear reac-
tions that involve difficult-to-produce targets. In a compound
reaction, target and projectile nuclei combine to form a highly
excited, intermediate system, the compound nucleus, which
subsequently decays. The reaction proceeds on a relatively
slow time scale (# 10"22 sec ), as the formation of a com-
pound nucleus involves the excitation of many degrees of
freedom. Apart from observing the constraints of basic con-
servation laws (energy, angular momentum), the formation
and decay of a compound nucleus are considered to be
independent of each other in first order (‘‘Bohr hypothesis’’);
this independence is exploited in the surrogate-reaction ap-
proach. To obtain experimental information on the decay of
the compound nucleus (B$) occurring in the reaction of
interest (aþ A ! B$ ! cþ C), this nucleus is produced
via an alternative, ‘‘surrogate’’ reaction (dþD ! B$ þ b)
that involves a projectile-target combination (dþD) that is
experimentally more accessible (see Fig. 1). The decay of B$

is observed in coincidence with the outgoing direct-reaction
particle b. The measured compound-nuclear decay probabil-
ities can then be combined with calculated formation cross
sections for the compound nucleus in the desired reaction to
yield the relevant reaction cross section.

Originally introduced in the 1970s (Cramer and Britt,
1970a; Britt and Wilhelmy, 1979), the surrogate approach
has recently received renewed attention (Younes and Britt,
2003b; 2003c; Petit et al., 2004; Boyer et al., 2006; Burke
et al., 2006; Escher and Dietrich, 2006; Escher et al., 2007;
Jurado et al., 2008; Escher and Dietrich, 2010; Kessedjian
et al., 2010). A sizable number of surrogate experiments
aimed at obtaining ðn; fÞ cross sections has been carried out
over the years, and recent efforts have also considered ðn;!Þ
cross sections. In principle, the method can also provide
information about the charged-particle or two-neutron exit
channels, or for reactions induced by charged particles, but, to
date, little effort has been devoted to those cases.

In this paper, we review the present status of the surrogate
method. In Sec. II, we have compiled representative examples
from the areas of nuclear astrophysics, nuclear energy, and
national security to illustrate the importance of cross sections
for reactions on unstable targets for a wide variety of appli-
cations. The surrogate idea and formalism are detailed in
Sec. III. The majority of the surrogate experiments carried
out so far have focused on ðn; fÞ cross sections. The early
work, carried out in the 1970s, is summarized in Sec. IV, and
the more recent experiments are reviewed in Sec. V. We

FIG. 1 (color online). Schematic representation of the desired (top)
and surrogate (bottom) reaction mechanisms. The basic idea of the
surrogate approach is to replace the first step of the desired reaction,
aþ A, by an alternative (surrogate) reaction,dþD ! bþ B$, that is
experimentally easier to access yet populates the same compound
nucleus. The subsequent decay of the compound nucleus into the
relevant channel, cþ C, can then be measured and used to extract the
desired cross section. Three typical decay channels are shown here:
neutron evaporation, fission, and ! emission.

354 Jutta E. Escher et al.: Compound-nuclear reaction cross sections from . . .

Rev. Mod. Phys., Vol. 84, No. 1, January–March 2012
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Why it is important to describe the CN formation well: 
Spin-parity dependence of the decay probabilities

§ The CN formed in neutron fusion 
has different Jp than when formed 
in inelastic scattering or transfer 
reactions >> The ‘spin-parity 
mismatch’ !! 

§ Sensitivity studies show
— Decay into g-channel depends 

very strongly on CN Jp 
— Decay by fission is less 

sensitive
— Decay by p, n, or 2n emission 

is `in-between’ but Jp cannot 
be ignored

Sensitivity studies:
• J. Escher and F.S. Dietrich, PRC 74, 054601 (2006)
• C. Forssen et al, PRC 75, 055807 (2007)
• J. Escher and F.S. Dietrich, PRC 81, 024612 (2010)
• S. Chiba and O. Iwamoto, PRC 81, 044604 (2010)
• A. Sharma et al, PRC 105, 014624 (2022)
• O. Gorton and J.E. Escher, PRC 107, 44612 (2023)

The Surrogate experiment gives:

P(p,dg) (E) = SJp F(p,d)
CN(E,J,p).GCN

g(E,J,p)

HF theory of the “desired” reaction:

sac = SJ,p saCN
 (E,J,p) . GCN

c(E,J,p)

92Zr

156Gd

236U

g-channel probabilities
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Why it is important to describe the CN formation well: 
Spin-parity dependence of the decay probabilities

§ The CN formed in neutron fusion 
has different Jp than when formed 
in inelastic scattering or transfer 
reactions >> The ‘spin-parity 
mismatch’ !! 

§ Sensitivity studies show
— Decay into g-channel depends 

very strongly on CN Jp 
— Decay by fission is less 

sensitive
— Decay by p, n, or 2n emission 

is `in-between’ but Jp cannot 
be ignored

Sensitivity studies:
• J. Escher and F.S. Dietrich, PRC 74, 054601 (2006)
• C. Forssen et al, PRC 75, 055807 (2007)
• J. Escher and F.S. Dietrich, PRC 81, 024612 (2010)
• S. Chiba and O. Iwamoto, PRC 81, 044604 (2010)
• A. Sharma et al, PRC 105, 014624 (2022)
• O. Gorton and J.E. Escher, PRC 107, 44612 (2023)

The Surrogate experiment gives:

P(p,dg) (E) = SJp F(p,d)
CN(E,J,p).GCN

g(E,J,p)

HF theory of the “desired” reaction:

sac = SJ,p saCN
 (E,J,p) . GCN

c(E,J,p)

fission probabilities

234U

236U



33
LLNL-PRES-xxxxxx

Why it is important to describe the CN formation well: 
Spin-parity dependence of the decay probabilities

§ The CN formed in neutron fusion 
has different Jp than when formed 
in inelastic scattering or transfer 
reactions >> The ‘spin-parity 
mismatch’ !! 

§ Sensitivity studies show
— Decay into g-channel depends 

very strongly on CN Jp 
— Decay by fission is less 

sensitive
— Decay by p, n, or 2n emission 

is `in-between’ but Jp cannot 
be ignored

Sensitivity studies:
• J. Escher and F.S. Dietrich, PRC 74, 054601 (2006)
• C. Forssen et al, PRC 75, 055807 (2007)
• J. Escher and F.S. Dietrich, PRC 81, 024612 (2010)
• S. Chiba and O. Iwamoto, PRC 81, 044604 (2010)
• A. Sharma et al, PRC 105, 014624 (2022)
• O. Gorton and J.E. Escher, PRC 107, 44612 (2023)

The Surrogate experiment gives:

P(p,dg) (E) = SJp F(p,d)
CN(E,J,p).GCN

g(E,J,p)

HF theory of the “desired” reaction:

sac = SJ,p saCN
 (E,J,p) . GCN

c(E,J,p)

n-channel probabilities

92Zr

158Gd

239U
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Why it is important to describe the CN formation well: 
Spin-parity dependence of the decay probabilities

§ The CN formed in neutron fusion 
has different Jp than when formed 
in inelastic scattering or transfer 
reactions >> The ‘spin-parity 
mismatch’ !! 

§ Sensitivity studies show
— Decay into g-channel depends 

very strongly on CN Jp 
— Decay by fission is less 

sensitive
— Decay by p, n, or 2n emission 

is `in-between’ but Jp cannot 
be ignored

Sensitivity studies:
• J. Escher and F.S. Dietrich, PRC 74, 054601 (2006)
• C. Forssen et al, PRC 75, 055807 (2007)
• J. Escher and F.S. Dietrich, PRC 81, 024612 (2010)
• S. Chiba and O. Iwamoto, PRC 81, 044604 (2010)
• A. Sharma et al, PRC 105, 014624 (2022)
• O. Gorton and J.E. Escher, PRC 107, 44612 (2023)

The Surrogate experiment gives:

P(p,dg) (E) = SJp F(p,d)
CN(E,J,p).GCN

g(E,J,p)

HF theory of the “desired” reaction:

sac = SJ,p saCN
 (E,J,p) . GCN

c(E,J,p)

2n-channel probabilities

92Zr

158Gd

239U
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Why it is important to describe the CN formation well: 
Spin-parity dependence of the decay probabilities

§ The CN formed in neutron fusion 
has different Jp than when formed 
in inelastic scattering or transfer 
reactions >> The ‘spin-parity 
mismatch’ !! 

§ Sensitivity studies show
— Decay into g-channel depends 

very strongly on CN Jp 
— Decay by fission is less 

sensitive
— Decay by p, n, or 2n emission 

is `in-between’ but Jp cannot 
be ignored

Sensitivity studies:
• J. Escher and F.S. Dietrich, PRC 74, 054601 (2006)
• C. Forssen et al, PRC 75, 055807 (2007)
• J. Escher and F.S. Dietrich, PRC 81, 024612 (2010)
• S. Chiba and O. Iwamoto, PRC 81, 044604 (2010)
• A. Sharma et al, PRC 105, 014624 (2022)
• O. Gorton and J.E. Escher, PRC 107, 44612 (2023)

The Surrogate experiment gives:

P(p,dg) (E) = SJp F(p,d)
CN(E,J,p).GCN

g(E,J,p)

HF theory of the “desired” reaction:

sac = SJ,p saCN
 (E,J,p) . GCN

c(E,J,p)

p-channel probabilities

60Co

57Fe
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Ignoring the spin-parity mismatch is not valid for (n,g):
Impact on capture cross sections extracted using the Weisskopf-Ewing approximation

Using the WE approximation is NOT valid for capture!

J. Escher and F.S. Dietrich, PRC 81 (2010) 024612
N. Scielzo, J. Escher, et al., PRC 81 (2010) 034608

Boutoux et al, PLB 712 (2012) 319

175Lu(n,g) extracted from 178Yb(3He,p) 
data using the WE approximation

Extracted 157Gd(n,g) cross section vs reference 
cross section & Surrogate WE simulations



37
LLNL-PRES-xxxxxx

95Mo(n,g) cross section from surrogate data
Full theory analysis vs Weisskopf-Ewing approximation

The Surrogate method 
does not use D0 or <Gg> 

w/o
Theory

Excellent
agreement 
(w/Theory)

Ratkiewicz, Cizewski, JE, Potel, et al, PRL 122, 052502 (2019)

§ 95Mo(n,g) from surrogate data
— Using calculated Jp and fitting 

procedure (blue band)

§ 95Mo(n,g) from surrogate data
— Using WE approximation 

(yellow data points):
s(n,g)(En) = sCN

(n+T)(En) . Pg(Eex)

Using the WE approximation is NOT valid for capture!

Accounting for the spin-parity population in surrogate reaction applications is important for obtaining correct results
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Common misconceptions: 
How to NOT obtain the spin-parity population

§ Spin-parity population is equal to that of the 
neutron-induced reaction
— Strong claims require strong proofs!

§ Spin-parity population is equal to the spin-parity 
distribution of the level density
— Reactions populate only a subset of states!

§ ‘Just use DWBA’
— 2-step mechanisms contribute at high Eex

§ ‘Just use Talys’
— Hmm….???
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How should we then calculate the Jp population?
The role of doorway states

Forming the CN in a surrogate 
reaction:

§ Starts with a ‘direct’ reaction 
that produces a ‘doorway state’ 
at Eex > several MeV

§ Doorway evolves into a CN

§ Spin population of doorway 
state = spin population of the CN

isotopic chart, taking place at energies from several keV to
tens of MeV, are required for nuclear astrophysics, national
security, and nuclear-energy applications. Not all relevant
data can be directly measured in the laboratory or easily
determined by calculations.

Direct measurements may encounter a variety of difficul-
ties: The energy regime relevant for a particular application is
often inaccessible: cross sections for charged-particle reac-
tions, e.g., become vanishingly small as the relative energy of
the colliding nuclei decreases. For astrophysical purposes,
such as descriptions of stellar environments and evolution,
reaction rates at energies below 100 keV are needed.
Furthermore, many important reactions involve unstable nu-
clei which are too difficult to produce with currently available
techniques or are too short lived to serve as targets in present-
day setups. Producing all relevant isotopes will remain chal-
lenging even for radioactive-beam facilities.

Cross section calculations are nontrivial since they often
require a thorough understanding of both direct and statistical
reaction mechanisms (as well as their interplay) and a de-
tailed knowledge of nuclear structure. Nuclear-structure mod-
els can provide only limited information and little is known
about optical-model potentials, level densities, and spectros-
copy relevant to nuclei outside the valley of stability.

To overcome these limitations, several indirect methods
have been employed in recent years. Approaches such as the
ANC (asymptotic normalization coefficient) method (Xu
et al., 1994; Azhari et al., 1999; Gagliardi et al., 1999;
Mukhamedzhanov, Gagliardi, and Tribble, 2001; Timofeyuk,
Johnson, and Mukhamedzhanov, 2003; Timofeyuk and
Descouvemont, 2005), Coulomb dissociation (Baur,
Bertulani, and Rebel, 1986; Baur and Rebel, 1996; Baur,
Hencken, and Trautmann, 2003), and the Trojan-horse
method (Baur, 1986; Typel and Baur, 2003; Wolter and
Typel, 2003; Baur and Typel, 2004; Pizzone and Spitaleri,
2008) have yielded valuable cross section information for
various direct reactions. These methods focus on direct re-
actions, i.e., fast reactions (time scale ! 10"22 sec ) that
involve simple rearrangements of the constituents of the
target and projectile nuclei.

The present review focuses on a complementary method,
the surrogate nuclear reaction method, which aims at deter-
mining reaction cross sections for compound-nuclear reac-
tions that involve difficult-to-produce targets. In a compound
reaction, target and projectile nuclei combine to form a highly
excited, intermediate system, the compound nucleus, which
subsequently decays. The reaction proceeds on a relatively
slow time scale (# 10"22 sec ), as the formation of a com-
pound nucleus involves the excitation of many degrees of
freedom. Apart from observing the constraints of basic con-
servation laws (energy, angular momentum), the formation
and decay of a compound nucleus are considered to be
independent of each other in first order (‘‘Bohr hypothesis’’);
this independence is exploited in the surrogate-reaction ap-
proach. To obtain experimental information on the decay of
the compound nucleus (B$) occurring in the reaction of
interest (aþ A ! B$ ! cþ C), this nucleus is produced
via an alternative, ‘‘surrogate’’ reaction (dþD ! B$ þ b)
that involves a projectile-target combination (dþD) that is
experimentally more accessible (see Fig. 1). The decay of B$

is observed in coincidence with the outgoing direct-reaction
particle b. The measured compound-nuclear decay probabil-
ities can then be combined with calculated formation cross
sections for the compound nucleus in the desired reaction to
yield the relevant reaction cross section.

Originally introduced in the 1970s (Cramer and Britt,
1970a; Britt and Wilhelmy, 1979), the surrogate approach
has recently received renewed attention (Younes and Britt,
2003b; 2003c; Petit et al., 2004; Boyer et al., 2006; Burke
et al., 2006; Escher and Dietrich, 2006; Escher et al., 2007;
Jurado et al., 2008; Escher and Dietrich, 2010; Kessedjian
et al., 2010). A sizable number of surrogate experiments
aimed at obtaining ðn; fÞ cross sections has been carried out
over the years, and recent efforts have also considered ðn;!Þ
cross sections. In principle, the method can also provide
information about the charged-particle or two-neutron exit
channels, or for reactions induced by charged particles, but, to
date, little effort has been devoted to those cases.

In this paper, we review the present status of the surrogate
method. In Sec. II, we have compiled representative examples
from the areas of nuclear astrophysics, nuclear energy, and
national security to illustrate the importance of cross sections
for reactions on unstable targets for a wide variety of appli-
cations. The surrogate idea and formalism are detailed in
Sec. III. The majority of the surrogate experiments carried
out so far have focused on ðn; fÞ cross sections. The early
work, carried out in the 1970s, is summarized in Sec. IV, and
the more recent experiments are reviewed in Sec. V. We

FIG. 1 (color online). Schematic representation of the desired (top)
and surrogate (bottom) reaction mechanisms. The basic idea of the
surrogate approach is to replace the first step of the desired reaction,
aþ A, by an alternative (surrogate) reaction,dþD ! bþ B$, that is
experimentally easier to access yet populates the same compound
nucleus. The subsequent decay of the compound nucleus into the
relevant channel, cþ C, can then be measured and used to extract the
desired cross section. Three typical decay channels are shown here:
neutron evaporation, fission, and ! emission.

354 Jutta E. Escher et al.: Compound-nuclear reaction cross sections from . . .

Rev. Mod. Phys., Vol. 84, No. 1, January–March 2012
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Challenge: Naïve potential-model 
picture not useful for deep holes
• Hole location
• Fragmentation

Solution: Dispersive optical potential 
connects OMP for scatter to mean field
• Scatter info gives DOMP at positive 

energies
• Mean field gives energy-averaged 

nuclear properties: single-particle 
Enlj, spectral functions Snlj, etc.
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Theory for (p,d) surrogate reactions:
Deep neutron holes + two-step reaction mechanisms
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Surrogate (p,d) reaction

§ Challenge: Nucleon removal 
accompanied by inelastic 
excitations:
— In entrance channel: 

92Zr(p,p’)92Zr**(p’,d)91Zr*
— In exit channel: 

92Zr(p,d’)91Zr**(d’,d)91Zr*

§ Solution: 2nd-order DWBA with 
collective model for inelastic 
scattering

Future: use global DOMP for hole states + QRPA structure theory to describe inelastic scattering component



43
LLNL-PRES-xxxxxx

Gaining confidence in the calculated spin-parity population:
Cross checks

Does the calculated ‘singles’ 
cross section agree with the 
surrogate measurement? ✓

Escher et al, PRL 121, 052501 (2018)
Escher et al, EPJ Conf. 178, 03002 (2018)

the surrogate method. 87Y has a half-life of 79.8 hours and
current cross section calculations have to rely on regional
systematics.

In the example considered here, the surrogate reaction
produces 88Y∗ by removing neutrons from inner shells of
the 89Y nucleus: deep hole states are involved in the pro-
duction of 88Y∗ near S n. Their location and fragmentation
as a function of Eex was obtained using the dispersive op-
tical model approach of Mahaux and Sartor [14]. At the
high excitation energies involved, one-step (p,d) pickup
processes have to be complemented by contributions from
two-step processes such as (p,p’)(p’,d) and (p,d’)(d’,d), in
which the initial 89Y or the final 88Y are inelastically ex-
cited. The calculations were carried out using the coupled-
channels code Fresco [15]. The proton-nucleus optical po-
tential by Koning and Delaroche [16] was used to describe
the entrance channel, and the deuteron-nucleus potential
by Daehnick et al. [17] was employed for the exit channel.
Due to the large number of states in the energy band pop-
ulated, the different contributions can be assumed to add
incoherently. Angle-integrated (p,d) cross sections can be
calculated and compared to measured (p,d) cross sections.

Si = 140, 1000, 1000 μm
ΔE E1 E2 detectors

28.5 MeV 
protons

Faraday
Cup

�����

�����
�����

Figure 2. Experimental setup. A 28.5-MeV beam was incident
on an 89Y target. Outgoing deuterons were identified and their
energy measured in a silicon telescope consisting of one thin and
two thick detectors at angles covering 30 − 60◦. Coincident γ
rays were detected in five HPGe clover detectors surrounding the
target chamber.

The requisite experiment was carried out at the Texas
A&M University Cyclotron Institute, where the K150
Cyclotron was employed to provide a 28.5-MeV proton
beam. The setup is shown schematically in Figure 2.
Particle-γ coincidence data was collected using the STAR-
LiTeR array, a combination of a silicon telescope array and
five HPGe clover detectors [18]. The outgoing deuteron
was detected at angles between 30◦ and 60◦ with 1◦-2◦ an-
gular resolution. From a reconstruction of the deuteron
energies it was determined that the CN 88Y was populated
at excitation energies up to about 12 MeV. Contributions
from carbon and oxygen contaminants were subtracted af-
ter measuring their characteristics using a carbon target
within this particular setup. To provide information on the

decay of the CN, the experiment determined coincidences
between the outgoing deuteron and γ-rays for transitions
between low-lying states (En < 2 MeV) in either 88Y or
87Y, as a function of the excitation energy. More details
about the experiment are given in Refs. [18–20].
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Figure 3. Comparison of the predicted 89Y(p,d)88Y∗ cross sec-
tion to measured results. Top panel: The angle-integrated (p,d)
cross section is shown as a function of excitation energy in 88Y∗.
The calculation takes into account both one-step (p,d) and two-
step (p,p’)(p’,d) and (p,d’)(d’,d) mechanisms. The cross section
is integrated over the 30◦-60◦ angular range covered by the ex-
periment. The experiment also populated known isobaric ana-
log states (‘IAS’); these are not explicitly included in the reac-
tion calculation. Emax indicates the experimental upper limit and
S n = 9.35 MeV is the neutron separation energy in 88Y. Bottom
panel: Angular differential cross sections for the (p,d) reaction
are shown for four excitation energies in the CN 88Y. The ener-
gies were selected to give a representative sample, without in-
cluding the effects of the IAS. Data from two different detector
segments are shown as blue and green circles with error bars.
The cross sections were scaled for ease of comparison.

Preliminary results are shown in Figure 3, where we
compare theoretical predictions to data from the (p,d)
experiment. The dispersive optical model, which gives
energy-averaged quantities, is not expected to reproduce
the details of the rich nuclear structure present at low ex-
citation energies (Eex !2-3 MeV). Hence we consider the
results at higher energies (Eex≈3-10 MeV). At those ener-
gies, two-step contributions are found to dominate the cal-
culated (p,d) cross section, with one-step mechanisms con-
tributing only about 20-25%. The figure shows the sum of
the two contributions as a dashed curve. Also, the experi-
ment was seen to populate isobaric analog states, indicated
with ‘IAS’ in the figure. The current reaction formalism
does not predict cross sections for populating these states,

3

EPJ Web of Conferences 178, 03002 (2018) https://doi.org/10.1051/epjconf/201817803002
CGS16
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Gaining confidence in the calculated spin-parity population:
Cross checks

Can we use the resulting HF parameters to predict other 
observables, not used for the fit?
Here, the g-transitions* following n emission are 
reproduced ✓

  

Escher et al, CNR*18 Conf. Proc. (2019)

Bayesian approach to extracting cross section

Etop

Eex

CN 
populatedCN 

reached by
n emission

Sn

p

d
Surrogate

(p,d) reaction

g

n

Hauser-Feshbach description of “desired” CN 
reaction

s(n,g) = SJ,p sn+target
CN (E,J,p) . GCN

g(E,J,p)

A Surrogate experiment gives

P(p,dg) (E) =SJ,p F(p,d)
CN(E,J,p).GCN

g(E,J,p)

Turning measurement into cross section
1. Use theory to describe Surrogate reaction, predict F(p,d)

CN

2. Develop rough decay model GCN
g

3. Fit uncertain parameters in GCN
g to reproduce P(p,dg)

4. Use best-fit parameters to calculate desired s(n,g)

Result: Experimentally constrained cross section calculation.
J. Escher et al, RMP 84 (2012) 353

n+90Zr

92Zr

91Zr

Explain that a decay model is 
used for G that includes standard 
forms for level densities and 
gamma strength functions, and a 
Bayesian ‘fit’ to the data allows 
us to determine the parameters.

*scaled
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Gaining confidence in the calculated spin-parity population:
Cross checks Escher, unpublished (2018)
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IAS have known Jp and 
‘perturb’ the spin-parity 
population in a very 
specific manner. 

And this is reflected in the 
g-transitions of the 
decaying CN
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Gaining confidence in the calculated spin-parity population:
Cross checks Escher, unpublished (2018)

IAS have known Jp and 
‘perturb’ the spin-parity 
population in a very 
specific manner. 

And this is reflected in the 
g-transitions of the 
decaying CN ✓

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
88Y Excitation Energy [MeV]

0

0.05

0.1

Pr
ob

ab
ili

ty

indx = 1
indx = 2
indx = 3

Fit to measured γ-rays
88Y 373keV -- Gamma Probabilities from 89Y(p,d)

Fri Jun  9 16:00:41 2017



47
LLNL-PRES-xxxxxx

Calculating spin-parity populations for (d,p) surrogate reactions:
deuteron breakup followed by partial fusion

MADDALENA BOSELLI AND ALEXIS DIAZ-TORRES PHYSICAL REVIEW C 92, 044610 (2015)

FIG. 1. (Color online) Some key reaction processes induced by a
weakly bound two-body nucleus at low incident energies.

exp(−iĤt/!), with Ĥ being the total Hamiltonian of
the system;

(iii) after a long propagation time tf , to calculate energy-
resolved observables using the wave function !(tf ).

A simple model with two degrees of freedom

As a test case, we will study the 6Li + 209Bi fusion within
a one-dimensional model with two degrees of freedom, where
the 209Bi target and the 6Li fragments ( 4He and 2H) are always
on a line. Figure 2 shows the coordinate system employed in
the model (Jacobi coordinates for a system of three bodies),
with the projectile considered is composed of two bodies (or
fragments). Xc.m. identifies the distance between the target and
the center of mass (c.m.) of the projectile, while ξ gives the
distance between the projectile constituents. M is the mass
of the target nucleus, while m1 and m2 are the masses of the
projectile constituents. The Hamiltonian of the system in terms

FIG. 2. (Color online) Illustration of the one-dimensional three-
body model and its coordinates.

TABLE I. Parameters of the Woods-Saxon nuclear potential,
which are used for different binary systems in the present calculations,
as well as the radius parameter of the uniformly charged sphere for
their Coulomb interactions (last column).

System V0 (MeV) r0 (fm) a0 (fm) r0c (fm)

209Bi − 6Li −50.000 0.950 1.050 1.2
209Bi − 4He −32.931 1.461 0.605 1.2
209Bi − 2H −26.000 1.465 0.668 1.2
4He + 2H −78.460 1.150 0.700 1.465

of these coordinates reads

Ĥ =
P̂ 2

Xc.m.

2µTP
+

p̂2
ξ

2µ12
+ U12(ξ ) + VT 1(Xc.m. − α ξ )

+VT 2(Xc.m. + β ξ ), (1)

where µTP = M(m1 + m2)/(M + m1 + m2), µ12 = m1m2/
(m1 + m2), α = m2/(m1 + m2), β = m1/(m1 + m2). U12 rep-
resents the interaction between the fragments. VT 1 and VT 2
describe the interaction between target and the two projectile
fragments, respectively, which depend on the relative dis-
tances x1 = Xc.m. − α ξ and x2 = Xc.m. + β ξ , as shown in
Fig. 2. Table I presents the parameters of the Woods-Saxon
nuclear potential for the binary systems in the calculations
below, while for their Coulomb interaction the potential of a
uniformly charged sphere was used. Please note that all the
radius parameters provide a critical distance determined by
r0 A1/3, where A is the heaviest mass in the corresponding
binary system. The Coulomb barriers between the projectile
fragments and the target obtained with these potentials are
as follows: (VB,RB) = (21.25 MeV,10.55 fm) for 4He + 209Bi
and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
similar to the Sao Paulo potential barriers [10].

To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
of the individual potential pockets.

1. Initial wave function

Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

!(ξ,Xc.m.,t = 0) = %0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,

H̃χn(ξ ) = Enχn(ξ ), (3)
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TABLE I. Parameters of the Woods-Saxon nuclear potential,
which are used for different binary systems in the present calculations,
as well as the radius parameter of the uniformly charged sphere for
their Coulomb interactions (last column).

System V0 (MeV) r0 (fm) a0 (fm) r0c (fm)

209Bi − 6Li −50.000 0.950 1.050 1.2
209Bi − 4He −32.931 1.461 0.605 1.2
209Bi − 2H −26.000 1.465 0.668 1.2
4He + 2H −78.460 1.150 0.700 1.465

of these coordinates reads

Ĥ =
P̂ 2
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+

p̂2
ξ

2µ12
+ U12(ξ ) + VT 1(Xc.m. − α ξ )

+VT 2(Xc.m. + β ξ ), (1)

where µTP = M(m1 + m2)/(M + m1 + m2), µ12 = m1m2/
(m1 + m2), α = m2/(m1 + m2), β = m1/(m1 + m2). U12 rep-
resents the interaction between the fragments. VT 1 and VT 2
describe the interaction between target and the two projectile
fragments, respectively, which depend on the relative dis-
tances x1 = Xc.m. − α ξ and x2 = Xc.m. + β ξ , as shown in
Fig. 2. Table I presents the parameters of the Woods-Saxon
nuclear potential for the binary systems in the calculations
below, while for their Coulomb interaction the potential of a
uniformly charged sphere was used. Please note that all the
radius parameters provide a critical distance determined by
r0 A1/3, where A is the heaviest mass in the corresponding
binary system. The Coulomb barriers between the projectile
fragments and the target obtained with these potentials are
as follows: (VB,RB) = (21.25 MeV,10.55 fm) for 4He + 209Bi
and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
similar to the Sao Paulo potential barriers [10].

To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
of the individual potential pockets.

1. Initial wave function

Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

!(ξ,Xc.m.,t = 0) = %0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,

H̃χn(ξ ) = Enχn(ξ ), (3)
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resolved observables using the wave function !(tf ).

A simple model with two degrees of freedom

As a test case, we will study the 6Li + 209Bi fusion within
a one-dimensional model with two degrees of freedom, where
the 209Bi target and the 6Li fragments ( 4He and 2H) are always
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with the projectile considered is composed of two bodies (or
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iWT 1(x1) and iWT 2(x2), which operate in the interior of
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projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
of the individual potential pockets.
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Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as
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where χ0 describes the ground state of the projectile and it is
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As a test case, we will study the 6Li + 209Bi fusion within
a one-dimensional model with two degrees of freedom, where
the 209Bi target and the 6Li fragments ( 4He and 2H) are always
on a line. Figure 2 shows the coordinate system employed in
the model (Jacobi coordinates for a system of three bodies),
with the projectile considered is composed of two bodies (or
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iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
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(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
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Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as
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r0 A1/3, where A is the heaviest mass in the corresponding
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as follows: (VB,RB) = (21.25 MeV,10.55 fm) for 4He + 209Bi
and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
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target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
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(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
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Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as
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where χ0 describes the ground state of the projectile and it is
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on a line. Figure 2 shows the coordinate system employed in
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with the projectile considered is composed of two bodies (or
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(m1 + m2), α = m2/(m1 + m2), β = m1/(m1 + m2). U12 rep-
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radius parameters provide a critical distance determined by
r0 A1/3, where A is the heaviest mass in the corresponding
binary system. The Coulomb barriers between the projectile
fragments and the target obtained with these potentials are
as follows: (VB,RB) = (21.25 MeV,10.55 fm) for 4He + 209Bi
and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
similar to the Sao Paulo potential barriers [10].

To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
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Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as
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with the projectile considered is composed of two bodies (or
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(m1 + m2), α = m2/(m1 + m2), β = m1/(m1 + m2). U12 rep-
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describe the interaction between target and the two projectile
fragments, respectively, which depend on the relative dis-
tances x1 = Xc.m. − α ξ and x2 = Xc.m. + β ξ , as shown in
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nuclear potential for the binary systems in the calculations
below, while for their Coulomb interaction the potential of a
uniformly charged sphere was used. Please note that all the
radius parameters provide a critical distance determined by
r0 A1/3, where A is the heaviest mass in the corresponding
binary system. The Coulomb barriers between the projectile
fragments and the target obtained with these potentials are
as follows: (VB,RB) = (21.25 MeV,10.55 fm) for 4He + 209Bi
and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
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target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
of the individual potential pockets.

1. Initial wave function

Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

!(ξ,Xc.m.,t = 0) = %0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,
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with the projectile considered is composed of two bodies (or
fragments). Xc.m. identifies the distance between the target and
the center of mass (c.m.) of the projectile, while ξ gives the
distance between the projectile constituents. M is the mass
of the target nucleus, while m1 and m2 are the masses of the
projectile constituents. The Hamiltonian of the system in terms

FIG. 2. (Color online) Illustration of the one-dimensional three-
body model and its coordinates.

TABLE I. Parameters of the Woods-Saxon nuclear potential,
which are used for different binary systems in the present calculations,
as well as the radius parameter of the uniformly charged sphere for
their Coulomb interactions (last column).

System V0 (MeV) r0 (fm) a0 (fm) r0c (fm)

209Bi − 6Li −50.000 0.950 1.050 1.2
209Bi − 4He −32.931 1.461 0.605 1.2
209Bi − 2H −26.000 1.465 0.668 1.2
4He + 2H −78.460 1.150 0.700 1.465

of these coordinates reads

Ĥ =
P̂ 2

Xc.m.

2µTP
+

p̂2
ξ

2µ12
+ U12(ξ ) + VT 1(Xc.m. − α ξ )

+VT 2(Xc.m. + β ξ ), (1)

where µTP = M(m1 + m2)/(M + m1 + m2), µ12 = m1m2/
(m1 + m2), α = m2/(m1 + m2), β = m1/(m1 + m2). U12 rep-
resents the interaction between the fragments. VT 1 and VT 2
describe the interaction between target and the two projectile
fragments, respectively, which depend on the relative dis-
tances x1 = Xc.m. − α ξ and x2 = Xc.m. + β ξ , as shown in
Fig. 2. Table I presents the parameters of the Woods-Saxon
nuclear potential for the binary systems in the calculations
below, while for their Coulomb interaction the potential of a
uniformly charged sphere was used. Please note that all the
radius parameters provide a critical distance determined by
r0 A1/3, where A is the heaviest mass in the corresponding
binary system. The Coulomb barriers between the projectile
fragments and the target obtained with these potentials are
as follows: (VB,RB) = (21.25 MeV,10.55 fm) for 4He + 209Bi
and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
similar to the Sao Paulo potential barriers [10].

To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
of the individual potential pockets.

1. Initial wave function

Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

!(ξ,Xc.m.,t = 0) = %0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,

H̃χn(ξ ) = Enχn(ξ ), (3)
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resents the interaction between the fragments. VT 1 and VT 2
describe the interaction between target and the two projectile
fragments, respectively, which depend on the relative dis-
tances x1 = Xc.m. − α ξ and x2 = Xc.m. + β ξ , as shown in
Fig. 2. Table I presents the parameters of the Woods-Saxon
nuclear potential for the binary systems in the calculations
below, while for their Coulomb interaction the potential of a
uniformly charged sphere was used. Please note that all the
radius parameters provide a critical distance determined by
r0 A1/3, where A is the heaviest mass in the corresponding
binary system. The Coulomb barriers between the projectile
fragments and the target obtained with these potentials are
as follows: (VB,RB) = (21.25 MeV,10.55 fm) for 4He + 209Bi
and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
similar to the Sao Paulo potential barriers [10].

To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
of the individual potential pockets.

1. Initial wave function

Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

!(ξ,Xc.m.,t = 0) = %0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,
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To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
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Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

!(ξ,Xc.m.,t = 0) = %0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,
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their Coulomb interactions (last column).
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+
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+ U12(ξ ) + VT 1(Xc.m. − α ξ )

+VT 2(Xc.m. + β ξ ), (1)

where µTP = M(m1 + m2)/(M + m1 + m2), µ12 = m1m2/
(m1 + m2), α = m2/(m1 + m2), β = m1/(m1 + m2). U12 rep-
resents the interaction between the fragments. VT 1 and VT 2
describe the interaction between target and the two projectile
fragments, respectively, which depend on the relative dis-
tances x1 = Xc.m. − α ξ and x2 = Xc.m. + β ξ , as shown in
Fig. 2. Table I presents the parameters of the Woods-Saxon
nuclear potential for the binary systems in the calculations
below, while for their Coulomb interaction the potential of a
uniformly charged sphere was used. Please note that all the
radius parameters provide a critical distance determined by
r0 A1/3, where A is the heaviest mass in the corresponding
binary system. The Coulomb barriers between the projectile
fragments and the target obtained with these potentials are
as follows: (VB,RB) = (21.25 MeV,10.55 fm) for 4He + 209Bi
and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
similar to the Sao Paulo potential barriers [10].

To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
of the individual potential pockets.

1. Initial wave function

Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

!(ξ,Xc.m.,t = 0) = %0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,

H̃χn(ξ ) = Enχn(ξ ), (3)
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Surrogate (d,p) reaction§ Challenges:
— Multiple reaction processes lead to observation of proton, 

while only breakup-fusion is relevant

§ Theory developments:
— Describe deuteron breakup and propagation in nuclear field
— Describe neutron absorption with optical model potential
— Formalism to be extended to deformed systems

§ Relevant (d,p) formalism has been developed, vetted, 
applied
— Three theory groups describe breakup-fusion, which contains 

CN formation, based on earlier work by Udagawa & Tamura 
and Ichimura, Austern & Vincent:
• Potel et al, PRC 92, 034611 (2015)
• Lei & Moro, PRC 92, 044616 (2015)
• Carlson et al, Few-Body Syst 57, 307 (2016), arxiv:1508.01466 

— Workshop compared formalisms and codes
• Potel et al, EPJA 53, 178 (2017)
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Calculating spin-parity populations for inelastic scattering surrogate reactions: 
Inelastic states and two-step contributions

§ Challenges:
— Zr(3He,3He’) populates states up to Eex=34 MeV
— Inelastic scattering is accompanied by (3He,a)(a,3He’) 

and (3He,d)(d, 3He’)

§ Theory:
— Describe states excited in scattering microscopically 

using QRPA
— Calculate inelastic cross sections using DWBA (use 

transition potentials)
— Calculate 2-step contributions in 2nd-order DWBA

Some inelastic contributions to 90Zr(3He,3He’)90Zr*

Escher, wip (2024)

3He3He’

90Zr
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Calculating spin-parity populations for inelastic scattering surrogate reactions: 
1-step inelastic and 2-step transfers contribute

Adding all contributions reproduces the 
measured singles cross section ✓

Adding by Jp give the spin-parity population

Escher, wip (2024)
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Inverse-kinematics experiments
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Inverse-kinematics (d,p) surrogate reactions at TRIUMF:
Neutron capture on 93Sr

§ Motivation
— b-delayed g-emission found surplus of gammas, with 

potential implications for a strong 93Sr(n,g) rate
— Provide an alternate way to place constraints on the gSF

§ Experiment at TRIUMF (2021)
— 93Sr RIB (8MeV/u) on CD2 target 
— SHARC (segmented Si array) to detect p 
— TIGRESS (12 HPGe clovers, 2p) to detect gammas
— Analysis underway

Richard, Hughes, JEE, Potel, et al (WIP)
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Three scenarios:
1. 84Se does not react with CD2 target
2. 84Se undergoes (d,p) reaction at CD2 

target to form 85Se then gamma-
decays to ground state.

3. Same as point 2, except nucleus 
emits neutron => 84Se Bρ = 2.3849 Tm

Bρ = 2.4119 Tm

Bρ = 2.4136 Tm

Inverse-kinematics (d,p) surrogate reactions at MSU/NSCL (now FRIB):
Detecting recoils instead of gammas

A1900

84Se(d,p) 
reaction

84Se

v

Here recoils are utilized instead of gammas

Adapted from slide by H. Sims

§ Motivation
— Develop techniques to move far away from stability
— Can we use recoils instead of gammas to detect 

channel of interest?

§ Experiment at NSCL (2017)
— 84Se RIB on CD2 target 
— ORRUBA/S800 spectrometer to detect p and beam-

like particles
— Preliminary 84Se(n,g) results available

Experimental details: 
see talk by J. Cizewski

Photo by S. Noji

Exp: Sims, Cizewski, Ratkiewicz, Pain,…
Theory: Escher, Potel, Gorton
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Surrogate reactions method for neutron capture - using recoiling nucleus

Etop

Eex

CN 
populatedCN 

reached by
n emission

Sn

Surrogate
reaction

g

n

85Se

*Width fluctuation corrections are omitted 
here, but accounted for in applications.

n+84Se
84Se

d

p

A Surrogate experiment gives

  P(d,pg) (E) = SJ,p F(d,p)CN(E,J,p).GCN
g(E,J,p)

84Se(n,g) cross section*:

 s(n,g) = SJ,p sn+target
CN

 (E,J,p) . GCN
g(E,J,p)

From 
theory

To be 
determined

Well modelled from 
nuclear theory

The new cross 
section we want

From 
experiment
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Theory for surrogate reactions:
Parameter constraints from Markov-Chain Monte-Carlo fit to recoil observables

Spin-parity population near Sn 
from direct-reaction theory for 

84Se(d,p) at 45 MeV/U
(Calculation: G. Potel) 

Surrogate coincidence probabilities

P(p,dg) (E) = SJ,p F(p,d)CN(E,J,p).GCN
g(E,J,p)

Coincidence probabilities 
from surrogate experiment

Escher et al, prelim (2024)
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MCMC fit to surrogate decay probabilities:
Prior and posterior Pg Escher et al, prelim (2024)

Pg prior
Run8d-w2

Pg post
Run8d-w2

Pre
lim

ina
ry

Pre
lim

ina
ry
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Sample parameter distributions and calculate capture cross section:
Prior to posterior results Escher et al, prelim (2024)

84Se(n,g) prior
Run8d-w2

84Se(n,g) post
Run8d-w2

Cross section calculation constrained 
by surrogate decay data ONLY

preliminary

Pre
lim

ina
ry

Pre
lim

ina
ry
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No-gamma surrogate reaction data constrains the 84Se(n,g) cross section
Preliminary results slightly lower than systematics suggest Escher et al, prelim (2024)

§ 84Se(n,g) cross section constrained by 
surrogate data, no need for auxiliary 
quantities (D0 or <Gg>) 

§ Fits not sensitive to details of the gSF, e.g. 
M1 LEE or E1 pygmy resonance. 

§ Using different warmstart parameter 
vectors give similar cross section results

84Se(n,g) post vs 
TENDL23

Future: Improving energy resolution and detecting additional exit channels. Field experiments at FRIB.

preliminary

Pre
lim

ina
ry
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Inverse-kinematics (d,p) at RIKEN/RIBF: 
Detecting residual nuclei 78,80Se to determine 79Se(n,g) Imai et al, PLB 850, 138470 (2024)

§ Motivation
— Study options for transmutation of nuclear waste (long-

lived fission products) via neutron-induced reactions
— Neutron capture rates for s-process nucleosynthesis

§ Experiment at RIBF:
— BigRIPS separator produced Se beams (from 238U+Be), 

which were degraded, here to 20MeV/u, impinging on 
CD2 target

— Outgoing protons detected upstream in lampshade-
arranged Si strip detector (9o-34o com)

— Energy resolution Ecom=0.8 (1.3) MeV at Eex=10 (13) MeV 
— Residual nuclei detected in SHARAQ spectrometer, 

identified by A/Q, magnetic rigidity, ionization chamber 

Absolute SRM Ratio SRM

Domingo-Pardo, LoI 
to Isolde nTOF (2014)
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Inverse-kinematics surrogate measurements at a heavy-ion storage ring at GSI/FAIR: 
Detecting recoils from 208Pb(p,p’) to determine 207Pb(n,g) Sguazzin et al, arXiv:2312.13742 (2023)

§ Motivation
— Cross section for design of lead-cooled fast reactors
— Neutron capture rates for s-process nucleosynthesis

§ Experiment at GSI/FAIR:
— Experimental storage ring (ESR)
— EPb=30.77MeV/u, scatter from gas-jet hydrogen target
— Outgoing protons in Si DE-E detector (54.8o-64.6o)
— Energy resolution Ecom=250 keV (RMS) 
— Residual nuclei detected in DSSD

Determine best HF decay 

Resulting 207Pb(n,g) vs Evals

Jp from QRPA+DWBA
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Fission



61
LLNL-PRES-xxxxxx

Surrogate reactions approach to obtain (n,f) cross sections and insights into the fission process

Describing fission challenges theory (and experiment)
• Descriptions range from phenomenological to microscopic
• Lots of data needed to provide constraints

Opportunity: Surrogate fission measurements 
• Observe fission properties in coincidence with surrogate ejectile
• Control over energy of fissioning nucleus, including sub-threshold

Opportunity: Extending theoretical treatments 
• Role of pre-equilibrium, width fluctuation corrections, damping effects

Bouland & Marini, NDS 193, 195 (2024)

Fragment mass distributions
Chiba et al, NDS 119, 229 (2014)

Schematic view of fission

First simultaneous evaluation . . . NUCLEAR DATA SHEETS O. Bouland et al.
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ENDF/B-VIII.0

TENDL-2017

JEFF-3.3

Bouland/Lynn/Talou (2013)

JENDL-4.0

This work

FIG. 17. (Color online) Calculated 237Pu neutron-induced
fission cross section (orange solid curve) compared to the
experimental data by Britt et al. [14] and Hughes et al. [62] and,
to the ENDF/B-VIII.0, JEFF-3.3, JENDL-4.0 and TENDL-
2017 evaluations. For internal reference, the calculation of
Ref. [5] is also provided (orange-dashed curve).

below Sn and about 15% lower at Sn. Cramer and Britt’s
data are compared to our calculation using the barrier
parameters provided by the authors of the measurement
[1]. On the opposite, a rather good agreement is found
at Sn, with a maximum difference of about 7%, giving us
confidence in our calculation and its parameters. From
the above analysis, we have confidence in the need of a
renormalization of Back’s et al. [42] data. For the present
study, a 1.34 renormalization factor was applied to the
240Pu(t, pf)242Pu∗ data (Fig. 18).

b. Giant intermediate resonance structure modeling
The observation of a Kπ = 0+ IS at (4.65 ± 0.05) MeV
reported in Ref. [33] justifies the use of the advanced
formalism of Section III. The calculation shown in Fig. 21
considers a sequence of β-vibrational resonances with
uniform spacing !ωνII=800 keV built on the fission isomer
at 2.2 MeV [29]. It allows to reasonably reproduce the
profile of the 4.65 MeV IS with a three-phonon β-vibration.
The other β-vibrational-intrinsic states are constructed
on the same footing as for 240Pu∗.
Several barrier pairs were tested. The best reproduc-

tion of the experimental fission probability is obtained
by slightly reducing the inner-barrier height reported in
Ref. [5] from (VA, VB) = (5.40, 5.30) to (5.30, 5.30) MeV.
This confirms the choice of a very close pair of barrier
heights for the 242Pu∗ in the classic framework of one-
dimensional double-humped parabolic-barrier represen-
tation. Attempts to better reproduce the energy region
between 5.4 MeV and 5.9 MeV by including additional
ISs remained unsuccessful (see Fig. 21). However, the
authors of the measurement report difficulties to fit the
data above 5.3 MeV [42]. Indeed some weakness in the
experimental data single events correction was suspected.
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FIG. 18. (Color online) Comparison of the 240Pu(t, pf) ex-
perimental data of Back et al. [42] to our probability calcu-
lations; with different pair of barrier parameters (Tab. IV).
For a better display, the original data (green dots) as well
as the calculation (green dotted-dashed curve) based on
(VA, VB) = (5.60, 5.65) [42] are shifted in energy (+200 keV).
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FIG. 19. (Color online) Calculated 241Pu neutron-induced
fission cross section as a function of incident-neutron energy
under the strong (green solid line) and incomplete damping
(red thick solid line) assumptions. The calculation based on
Back’s et al. [42] fission-barrier heights is also shown (purple
dot-dashed line - see text). Data from Tovesson et al. [56] and
Szabo et al. [70], as well as the ENDF/B-VIII.0 and JEFF-3.3
evaluations are plotted for comparison.

The 241Pu neutron-induced fission cross section was
recalculated using the (5.30, 5.30) MeV barrier heights
set and assuming strong or incomplete damping of β-
vibrational states. Figure 19 shows the two calculations
compared to data from Tovesson et al. [56] and Szabo et
al. [70], and to the ENDF/B-VIII.0 and JEFF-3.3 evalua-
tions. The fission cross section calculation obtained with

125

236Pu(n,f)

R.J. Caperson et al, PRC 84 (2014) 353

240Am(n,f) 
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Inverse-kinematics (d,p) with HELIOS at ANL: 
Determining fission barriers in 239U from 238U(d,pf) Bennett et al, PRL 130, 202501 (2023)

§ Motivation
— Collect fission data (barriers, mass and 

charge yields) for nuclear astrophysics 
(‘fission recycling’), future power 
systems, safeguard applications

— Benchmarks for fission models

§ Experiment at ANL:
— Use of solenoidal spectrometer HELIOS
— 238U beam (Eb=8.6 MeV/u) on CD2 

target
— Outgoing protons deflected in 

magnetic field and detected upstream 
on 4-sided position-sensitive Si array

— Fission fragments detected in gas-filled 
heavy-ion detectors

Experimental fission probability 
compared to GEF (top) and (scaled) 
compared to results deduced from 
evaluations (bottom).

Future: measurements with SOLARIS at FRIB and ISOLDE Solenoidal Spectrometer (ISS) at CERN
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Limitations
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Limitations of the SRM (in its present form)

§ Forming a CN in the resonance region
— Cannot use present approach which relies on HF decay calculations
— Investigate the role of width fluctuations

§ Failure to form a compound nucleus
— ‘just a little fail’ aka preequilibrium: has to be accounted for > see Zr(n,2n) applications
— Need to understand how doorway states damp into CN
— No CN at all > need other approach

§ Trying to measure direct capture cross section
— Need a different method (ANC, Trojan Horse, Coulomb dissociation, ….)

§ There are thousands of unstable nuclei for which we would like cross sections
— Need to develop predictive theory
— SRM can provided targeted cross section results to validate theory and address specific needs 
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Concluding remarks

1. Surrogate reaction method combines theory and 
experiment to constrain cross section calculations for 
compound reactions that cannot be measured 
directly. 

2. Method uses inelastic scattering or transfer reactions 
in regular or inverse kinematics.

3. Uses experimental observable indicating decay into 
channel of interest. Does not use auxiliary quantities 
(D0, <Gg>) which are unavailable for unstable 
isotopes. When use Bayesian parameter inference, 
UQ and correlations are built in.

4. The last decade has seen significant progress on both 
the theory and experimental side. New experimental 
facilities are providing opportunities to further 
expand.

4. There is very interesting physics associated with surrogate 
reaction mechanism:
• We need broadly-applicable theoretical descriptions of 

inelastic scattering and transfer reactions
• Doorway states play an important role in producing the 

CN. We need to better understand how they damp.
• Width fluctuations in surrogate reactions are 

understudied.

5. We will not be able to measure all reactions of interest. 
Predictive theory is needed. Surrogate measurements can be 
used to validate and complement theory

A thank you to my collaborators:
LLNL: O. Gorton, E. In, G. Potel, C. Pruitt, A. Thapa, I.J. Thompson, W. Younes, 

B. Alan, R. Casperson, J. Harke, R. Hughes, A. Ratkiewicz, N. Scielzo
ORNL: S.Pain 

Rutgers U.: J. Cizewski, H. Sims 
Ohio U: A. Richard 

CEA/France: M. Dupuis, S. Peru
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Thank you!
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CNR*24 invited keynote talk (40+10 min):
Surrogate nuclear reactions method

Abstract:
Cross sections for compound-nuclear (CN) reactions are important for nuclear astrophysics and other applications.  Direct 
measurements are not always possible for the reactions of interest and calculations without experimental constraints can be quite 
uncertain.  Thus indirect approaches, such as the surrogate reaction method (SRM), are being developed to fill the gaps.  The SRM, 
which uses a (direct) inelastic scattering or transfer reaction to obtain information on the decay of a specific compound nucleus, has 
a long history of providing probabilities for fission, gamma and particle emission. While earlier implementations of the method used 
minimal theory to provide approximate cross sections for (n,f) reactions, better theoretical descriptions of the underlying reaction 
mechanisms have made it possible to also obtain (n,g), (n,n’), and (n,2n) cross sections that agree well with benchmarks.  I will 
discuss multiple applications of the modern implementation of the SRM, highlight theory advances that enable them, and comment 
on opportunities offered at new experimental facilities. 

*This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344. Support from the LDRD Program, Projects 19-ERD-017, 20-ERD-030, 21-LW-032, 22-LW-029, 23-SI-004, and 24-ERD-023 is acknowledged.
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StarLiTeR at Texas A&M

Reference (202X)

Experiment at Texas A&M
Cyclotron Institute

Top view of the STARLiTeR array.
HPGe surrounds chamber Si telescope.

STARLiTeR array closed up around the chamber. 
Cyclotron beam comes from right and exits on left.

J.T. Burke, priv. commun.

Si = 140, 1000, 1000 μm
ΔE E1 E2 detectors

28.5 MeV 
protons

Faraday
Cup

We record the total energy, angle and determine the particle type

Some experimental details:
- 13-day run (LLNL experimental team & 

collaborators
-  Si energy resolution 75 keV one sigma
-  Gamma energy resolution 1.7 keV one sigma
-  Angle range 30 to 60 degrees
-  Y89 mono-isotopic 760 micrograms/cm2



69
LLNL-PRES-xxxxxx

Surrogate reactions method for (n,n’) and (n,2n)

Compton-
suppressed 

“clover” 
HPGe 

detector

E1 detector
(Si: 1000 µm)

d-electron
shield

3He beam
(50 MeV)

DE detector
(Si: 140 µm)

g

89Y target

STARS/LiBerACE experiments at LBNL
90,91,92Zr(3He,3He’) and 90,91,92Zr(3He,a)
89Y(3He,3He’) and 89Y(3He,a)
Scielzo et al.
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SRM for (n,f) cross sections

§ Results used the 
Weisskopf-Ewing 
approximation: ignore 
spin-parity mismatch

§ Typically agree within 
10-15% with 
benchmarks

§ Low energies and fission 
barriers tend to be more 
sensity to Jp mismatch

§ Role of preequilibrium 
needs to be explored 
further

R.O. Hughes et al, PRC 90 (2014) 014304

236Pu(n,f) 237Pu(n,f) 238Pu(n,f) 

C
ou

lo
m

b 
ba

rri
er

(u
pp

er
 li

m
it 

of
 

th
is

 e
xp

er
im

en
t)

R.J. Caperson et al, PRC 84 (2014) 353

240Am(n,f) 

Kessedjian et al. (CENBG), PLB 692 (2010) 297


