RUTGERS THE STATE UNIVERSITY

New experimental techniques to inform neutron-induced reaction cross sections on rare isotopes with surrogate reactions

Jolie A. Cizewski Rutgers Uníversíty

Compound-Nuclear Reactions and Related Topics (CNR*24) Vienna, Austria July 8-12, 2024

ITGERS

ORRUBA and GODDESS Collaborators

Harry Sims **David Walter**

Sudarsan Balakrishnan Heather Garland Mara Grinder Alex Lepailleur Pei-Luan Tai Rebecca Toomey Chad Ummel JAC

Work supported in part by U.S. Department of Energy and National Science Foundation **Steve Pain Andrew Ratkiewicz** Jutta Escher Gregory Potel **GRFTINA** Team Tony Ahn Sean Burcher Scott Carmichael Giordano Cerizza Kelly Chipps Mike Famiano **Rajesh Ghimire** Tom Ginter **Oliver Gorton** Tim Gray **Kate Jones Toby King** Alan McIntosh Shumpei Noji Patrick O'Malley Jorge Pereira Karl Smith **Cory Thornsberry** Marija Vostinar

RUTGERS Synthesis of heavy elements requires (n,γ)

M. Arnould and S. Goriely, Prog. Part. Nucl. Phys. 112, 103768(2020)

Synthesis of A≈80: many (n,γ) processes

JTGERS

Synthesis of A≈80: many (n,γ) processes

TGERS

RUTGERS

Focus on informing ⁸⁴Se(n,γ)

A≈80 peak and (d,p) reactions

Focus: N=50 ⁸⁴Se

GERS

Direct-semi-direct Near N shell closures (n,γ) zA_N γ S_n r_{eutron} S_n $zA+1_{N+1}$

Near closed shells

- Level density low near S_n
- Direct neutron capture important
- Depends on
 - E_x of low- ℓ single particle states
 - Spectroscopic factor S

$$S = \left(\frac{d\sigma}{d\Omega}\right)_{exp} / \left(\frac{d\sigma}{d\Omega}\right)_{thy}$$

R. Surman et al., (weak-r process) AIP Advances **4**, 041008 (2014)

RUTGERS (d,p) reaction 45 MeV/u N=50 ⁸⁴Se beams

Extracting Spec Factors => Direct capture

45 MeV/u at NSCL

JTGERS

CNR*24

H.E. Sims Phd Dissertation (2020)

H.E. Sims, D Walter et al.,

in preparation for PRC (2023)

Extracting Spec Factors => Direct capture

45 MeV/u at NSCL

FGERS

CNR*24

in preparation for PRC (2023)

RUTGERS (d,p) studies with 4.5 MeV/u & 45 MeV/u ⁸⁴Se beams

82

h_{11/2} d_{3/2}

g_{7/2}

S_{1/2}

 $d_{5/2}$

g_{9/2}

Direct-semi-direct (DSD) capture

- Cross sections small $\approx 20 \ \mu b/sr; p$ -wave capture
- Statistical capture? σ much larger?

RUTGERS (d,p) studies with 4.5 MeV/u & 45 MeV/u ⁸⁴Se beams

Direct-semi-direct capture

- Cross sections small ≈20 µb/sr for pwave capture
- Statistical capture? σ much larger?
- > Need valid (n, γ) surrogate reaction

H.E. Sims Phd Dissertation (2020)H.E. Sims, D Walter et al., in preparation for PRC (2023)J.A. Cizewski et al,

AIP CP 1090, 463 (2009)

RUTGERS

Surrogate reaction concept &

Hauser-Feshbach formalism

RUTGERS Forming compound nucleus in (d,p)

$$P_{p\gamma}(E_x,\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_x,J,\pi,\theta) G_{\gamma}^{CN}(E_x,J,\pi)$$

RUTGERS

Surrogate (n,γ) with $(d,p\gamma)$

(d,p) reaction to forms compound nucleus

- Need to measure P(d,pγ)
- Need theory to calculate formation of CN: F^{CN}
- ✤ Need to deduce decay of CN: G^{CN}

$$P_{p\gamma}(E_x,\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_x,J,\pi,\theta) G_{\gamma}^{CN}(E_x,J,\pi)$$

Validate with ${}^{95}Mo(d,p\gamma)$ reaction & ${}^{96}Mo$ gammas $\ell = 0$ capture on 5/2⁺ => 2⁺,3⁺

 $\sigma(n,\gamma)$ was measured and informed

RUTGERS What we measured in normal kinematics

$$P_{pY}(E_x) = \frac{Number of CN decays via channel Y}{Number of times the CN is formed}$$

- Channel Y: individual discrete γ transitions to low-lying states
 - Intensity (=counts/efficiency) of specific transitions
- Number of times CN is formed
 - Intensity of single protons as a function of E_x

$$P_{pY}(E_x) = \frac{\frac{N_{pY}(E_x)}{\varepsilon_Y}}{N_p(E_x)}$$

- Normal kinematics "easy"
 - Stable heavy target; light stable beam
 - Silicon detectors predominantly at forward angles
- Don't need heavy recoil detection CNR*24

A. Ratkiewicz et al., PRL **122**, 052502 (2019)

G. Potel et al, PRC 92, 034611(2015)

UTGERS

A. Ratkiewicz et al., PRL **122**, 052502 (2019) CNR*24

RUTGERS Goal: Inform (n,γ) on rare isotopes with (d,p)

- Heavy beam on light (CD₂) target = inverse kinematics
- Proton detection: good energy and angle resolution: ORRUBA
- Challenge: detecting discrete gammas
 - Relatively low gamma efficiency, especially discrete γ
 - Away from even-even closed shells
 - High level density even at low E_x
 - Especially final odd-odd nuclei
- Want Y the gamma decay channel:
 - Not dependent on specific gammas

 $P_{pY}(E_x) = \frac{Number \ of \ CN \ decays \ via \ channel \ Y}{Number \ of \ times \ the \ CN \ is \ formed}$

$$P_{pY}(E_x) = \bigcirc$$

RUTGERS Inform (n,γ) on ⁸⁴Se (rare isotope) with (d,p)

- ⁸⁴Se(d,p) populates ⁸⁵Se* CN
- CN at $E_x < S_n$: only decays by gamma emission => ⁸⁵Se
- CN at $E_x > S_n$: if decays by gamma emission => ⁸⁵Se = channel Y
- CN at $E_x > S_n$: if decays by neutron emission => ⁸⁴Se

 $P_{pY}(E_x) = \frac{Number of CN decays via channel Y}{Number of times the CN is formed}$

$$P_{pY}(E_x) = \frac{\frac{N_{p-^{85}Se}(E_x)}{\varepsilon}}{N_p(E_x)}$$

- Detection efficiency of heavy recoils > gammas
- No dependence on details of γ-decay
- Need excellent separation of ⁸⁵Se and ⁸⁴Se

SRM at S800 without detecting y-rays

Three scenarios:

RUTGERS

- ⁸⁴Se does not react with CD₂ target, continues with same momentum distribution as determined by slits in A1900
- 2. ⁸⁴Se undergoes (d,p) reaction at $CD_2 \Rightarrow CN$ ⁸⁵Se $\Rightarrow \gamma$ decays to ⁸⁵Se g.s.
 - Know E_x from protons

 Same as point 2, except CN ⁸⁵Se emits neutron => ⁸⁴Se CNR*24

SRM at S800 without detecting y-rays

Three scenarios:

ITGERS

- 1. ⁸⁴Se does not react with CD_2 target, continues with same momentum distribution as determined by slits in A1900
- 2. ⁸⁴Se undergoes (d,p) reaction at $CD_2 \Rightarrow CN^{85}Se \Rightarrow \gamma$ decays to ⁸⁵Se q.s.
 - Know E_x from protons

3. Same as point 2, except CN ⁸⁵Se emits neutron => 84Se **CNR*24**

RUTGERS

SRM at S800 without detecting y-rays

Advantages:

- With (low intensity RIBs) all statistics in single observable
- ~25-30% detection efficiency (much better than γ efficiency ≈13%)
 - Can measure by looking at bound states
 - Not reliant on simulations
 - If can tighten up momentum acceptance, less beam-recoil overlap
- No need for complicated cascade info get emission probability without knowledge of how gamma decay occurs

Difference:

 No details or constraint on specific gamma branches or cascade

Challenges:

 Need significant characterization of background from Carbon in target

H.E. Sims, S.D. Pain, 2021

H.E. Sims, 2023

H.E. Sims, 2023

P_v from S800 coincidences & theory

 $\Rightarrow \sigma(n, \gamma)$ from surrogate reaction data

$$P_{\gamma}(E_x) = \sum_{J,\pi} F_{dp}^{CN}(E_x, J, \pi, \theta) G_{\gamma}^{CN}(E_x, J, \pi)$$

$$\sigma_{n\gamma}(E_n) = \sum_{J,\pi} \sigma_n^{CN}(E_x, J, \pi) G_{\gamma}^{CN}(E_x, J, \pi)$$

Theory: Escher, Potel, Gorton (prelim, 6/2024)

CNR*24 H.E. Sims, 2023

RUTGERS

P_v from S800 coincidences & theory

 $\Rightarrow \sigma(n, \gamma)$ from surrogate reaction data

$$P_{\gamma}(E_{\chi}) = \sum_{J,\pi} F_{dp}^{CN}(E_{\chi}, J, \pi, \theta) G_{\gamma}^{CN}(E_{\chi}, J, \pi)$$

$$\sigma_{n\gamma}(E_n) = \sum_{J,\pi} \sigma_n^{CN}(E_x, J, \pi) G_{\gamma}^{CN}(E_x, J, \pi)$$

Theory:

- 1. Reaction mechanism for (d,p) J^{π} population vs E_{x}
- 2. Hauser-Feshbach code (YAHFC) and J^{π}
 - > Decay of the CN ⁸⁵Se $G_{\gamma}^{CN}(E_{\chi}, J, \pi)$
- 3. Markov-Chain Monte-Carlo to fit HF decay parameters from surrogate observables
- 4. Calculate desired σ $^{84}Se(n,\gamma)$ by sampling posterior parameter distribution

Theory: Escher, Potel, Gorton (prelim, 6/2024)

GERS

P_v from S800 coincidences & theory

$\Rightarrow \sigma(n, \gamma)$ from surrogate reaction data

$$P_{\gamma}(E_x) = \sum_{J,\pi} F_{dp}^{CN}(E_x, J, \pi, \theta) G_{\gamma}^{CN}(E_x, J, \pi)$$

$$\sigma_{n\gamma}(E_n) = \sum_{J,\pi} \sigma_n^{CN}(E_x, J, \pi) G_{\gamma}^{CN}(E_x, J, \pi)$$

Theory:

- Reaction mechanism for (d,p) J^π population vs A Hauser-Feshbach code (YAHFC) and J^π
 Decay of the CN ⁸⁵Se G^{CN}_γ(E_x, J, π)
- 3. Markov-Chain Monte-Carlo to fit HF decay parameters from surrogate observables
- 4. Calculate desired σ^{84} Se(n, γ) by sampling posterior parameter distribution

⁸⁴Se(n, γ) σ from SRM 10⁰ 68% 08% 10⁻¹ TENDL23 10⁻² 10⁻³ Preliminary 0000 10⁻⁴ 10-5 10-6 10⁻³ 10-2 10-1 10⁰

Results

- 1. $\sigma(n, \gamma)$ constrained by data, no D_0 or $<\Gamma_{\gamma}>$
- 2. Not sensitive to details of γ SF
- 3. Similar results w/ different parameter vectors

CNR*24

Theory: Escher, Potel, Gorton (prelim, 6/2024)

En [MeV]

Rutgers

- Measure: (d,pγ) with ≈45 MeV/u ⁸⁰Ge (N=48) and ⁷⁵Ga beams + ORRUBA + GRETINA + S800
- > Inform $\sigma(n,\gamma)$
 - No gamma surrogate reaction method
 - Discrete gamma SRM; Gamma rays would confirm isotopics

Inform i- and weak r-process nucleoysnthesis

Unique opportunity at FRIB & S800

- **ORRUBA + GRETINA at S800**
 - beam tracking (gas) detectors
- S800 excellent PID

RUTGERS

- Can separate isotopes
- Beam blocker
- Requires CD₂ and CH₂ data

RUTGERS GRETINA + ORRUBA + S800 at FRIB

SRM at S800 without detecting y-rays

GERS

GODDESS at FRIB Spring 2024

- Upstream beam tracking chamber
- ORRUBA charged particles
- GRETINA gamma rays
- S800 heavy recoils
 - Blocked ⁸⁰Ge(32⁺) and ⁸⁰Ge(31⁺) beams
- ORRUBA-GRETINA-S800 coincidences

- Can cleanly identify ⁸¹Ge channel from (d,p) on ⁸⁰Ge(32⁺)
 - Need full analysis
 - Maximize proton energy resolution: Beam tracking
 - Isolate (d,p) protons: Subtraction of CH₂ protons from CD₂ data
 - Maximize ID of ⁸¹Ge recoils: use full suite of S800 FP detectors and TOF
 - > Prospects for surrogate (n, γ) analysis promising
- Unexpected preliminary results
 - See ⁸⁰Ge(31⁺)(d,p)⁸¹Ge + n: prospects for surrogate (n,n')?
 - See ⁸⁰Ge(31⁺)(d,p)⁸¹Ge + 2n: prospects for surrogate (n,2n)?
- Also, ⁷⁵Ga(d,pγ)⁷⁶Ga* for surrogate (n,γ) for i-process nucleosynthesis

Rutgers

- Summary
- (d,p) and (d,pγ) reactions inform i- and weak r- process A≈80 nucleosynthesis
- Direct-semi-direct capture near neutron closed shells
 - Measure spectroscopic factors with (d,p)
 - Deduce DSD (n,γ)
- (d,pγ) validated surrogate reaction method (SRM) for (n,γ)
 - Measure discrete gammas
 - > Inform LD and $\gamma SF \Rightarrow G_{\gamma}^{CN}(E_x, J, \pi) \Rightarrow \text{ inform } \sigma(n, \gamma)$
- Prospects for No Gamma Surrogate (NGS) reaction method
 - Measure total population A+1 nucleus
 - Details of gamma decay not needed
 - $\succ G_{\gamma}^{CN}(E_x, J, \pi) =>$ inform $\sigma(n, \gamma)$ with new SRM framework
- Recent measurements ⁸⁰Ge, ⁷⁵Ga(d,pγ) at FRIB ORRUBA+GRETINA+S800
 - Preliminary (and unexpected) results

Rutgers

- (d,p) and (d,pγ) reactions inform i- and weak r- process A≈80 nucleosynthesis
- Direct-semi-direct capture near neutron closed shells
 - Measure spectroscopic factors with (d,p)
 - Deduce DSD (n,γ)
- (d,pγ) validated surrogate reaction method (SRM) for (n,γ)
 - Measure discrete gammas
 - > Inform LD and $\gamma SF \Rightarrow G_{\gamma}^{CN}(E_x, J, \pi) \Rightarrow \text{ inform } \sigma(n, \gamma)$
- Prospects for No Gamma Surrogate (NGS) reaction method
 - Measure total population A+1 nucleus
 - Details of gamma decay not needed
 - $\succ G_{\gamma}^{CN}(E_x, J, \pi) =>$ inform $\sigma(n, \gamma)$ with new SRM framework
- Recent measurements ⁸⁰Ge, ⁷⁵Ga(d,pγ) at FRIB ORRUBA+GRETINA+S800
 - Preliminary (and unexpected) results

Work supported in part by U.S. Department of Energy and National Science Foundation