Progress on ¹⁹F(alpha,n)

Global R-matrix analysis of the ¹⁹F(alpha,n) reaction

Eleni Vagena NCSR Demokritos, Athens, Greece

Vivian Dimitriou Nuclear Data Section, IAEA, Vienna, Austria

Why picking the $19F(\alpha,n)$ reaction?

Helps to determine the neutron environment in applications such as:

1. Nuclear fuel cycle

 Fluorine compounds of U and Pu are everywhere in the nuclear fuel cycle thus F(α,n) neutrons are important to be understood to design non-destructive array measurements.

2. Rare-events experiments

 Neutrons –coming from a-capture reactions- may dominate in background events in underground experiments looking for rare processes (such as dark matter WIMPs).

3. Nucleosynthesis

 As the main source of ¹⁹F in the universe has not been yet clearly identified —one of the answered questions in stellar modelling- the 19F(α,p) reaction that populates the 23Na system is the key ingredient and still hard to know in low energies. The 19F(α,n) reaction can be extremely useful in the interpretation of the data.

This case is a nice example of cross-cutting nuclear data needs

Total cross-sections of (α, n) reactions in fluorine (19F)

Data from:	Incident energy (MeV)	
Wrean et al.2000	Threshold- 3.01	Adopted dataset up to 3.1 MeV
Balakrishnan, et al. 1983	2.6-5.1	Carbon contamination of the sample – significant contribution of the neutron yield especially below 3.4 MeV
Norman et al. 2015	3.63-9.88	From thick target yields
Peters et al. 2016	3.92-6.67	Idaho Lab. report
Gladun et al. 1980		Deviation from the other measurements
Van der Zwan and Geiger 1977	Threshold - 4.7 MeV	Excitation functions at 0 deg

Evaluated cross section data for the ${}^{19}F(\alpha,n)$

The evaluated cross sections were available in: JENDL/AN-2005 and TENDL-2021 while no data was found in JEFF-3.2 and ENDF/B-VII.1

New evaluation

Adopted cross-section data up to 5 MeV:

- Up to 3 MeV adopt
 Wrean and Kavanagh
 2001 data
- From 3 to 5 MeV
 adopt Balakrishnan et
 al 1978 data

No-model evaluation – direct fit of cross sections

Simakov et al., NDS 137 (2017) 190

Level diagram of the ²³Na compound system

ENSDF/TUNL databases: scarce info

In the energy region E_x =12.420-13.509 MeV there is no information for the Jpi's, only for energies E_R and widths Γ_R

In the energy region E_x =13.509-25.4 MeV only level energies are known

R-matrix analysis up to 3 MeV

• AZURE2 R-matrix code

- Channels: alpha+¹⁹F (incident)
 n+²²Na g.s.; p+²²Ne g.s.
 (outgoing)
- Channel radius: $1.4 \cdot (A_1^{1/3} + A_2^{1/3})$
- L=4
- No background poles

- Experimental data included in the analysis
 - (alpha,n): Wrean-Kavanagh 2001, angle-integrated, ${\rm E}_{\alpha}$ up to 3 MeV, norm. unc. ~8%
 - (alpha,n): L. Van Der Zwan et al. 1977. excit. func., 0 deg, E_{α} up to 4.7 MeV
 - (alpha,el/p₀/p₁): Cseh et al, 1984; excitation function at 5 angles, E_{α} up to 3.7 MeV, no info on syst. unc.
 - (alpha,p₀): Schier et al. 1976: angular distributions at ~20 angles, E_{α} up to 5 MeV

Normalizations in R-matrix analysis: free

• For energies above 2.4 MeV ($E_x \sim 12.4$ MeV) there is no J^{π}

(alpha,p) channel

¹⁹F(α,p₀)²²Ne differential cross section: we try to reproduce the data using Schier's extracted J^π values

Experimental data: Schier et al, 1976: angular distributions for excitation energies 12.563-14.453 MeV. provides J^{π} values for all 21 resonances (single- and two-level R-matrix theory)

(alpha,p) channel,cont

AZURE2 analysis for the (alpha, p) channel does a ٠ rather good job of describing most of the Schier et al. data

2.2e-03

2.0e-03

1.8e-03

1.6e-03

1.4e-03

1.0e-03

8.0e-04

6.0e-04

dΩ (b/sr)

do/ 1.2e-03

In all data, J^{π} values suggested by Schier et al. ٠ were used (highlighted data).

(α, p_0) measurements Schier et al, 1976					
Ea	Ex	Jpi			
2.538	12.564	<mark>3/2+</mark> ,3/2-			
2.639	12.647	<mark>3/2-</mark>			
2.742	12.732	<mark>5/2+</mark> ,7/2-			
3.036	12.975	<mark>1/2+</mark> ,7/2-			
3.165	13.082	<mark>1/2+</mark> ,7/2-			
3.266	13.165	<mark>5/2+</mark> ,7/2-			
3.308	13.200	<mark>7/2-</mark> ,9/2+			
3.361	13.243	<mark>5/2+</mark> ,5/2-			
3.548	13.398	<mark>3/2-</mark> ,7/2-			
3.735	13.552	<mark>1/2-</mark> ,5/2+			
3.87	13.664	<mark>5/2+</mark> ,7/2-			
4.115	13.866	<mark>1/2-</mark> ,7/2-			
4.186	13.925	<mark>3/2-</mark> ,5/2+			
4.344	14.056	<mark>3/2-</mark> ,7/2-			
4.5	14.184	<mark>3/2-</mark> ,3/2+			
4.616	14.280	<mark>3/2-</mark> ,3/2+			
4.704	14.353	<mark>1/2+</mark> ,7/2-			
4.825	14.453	<mark>1/2+</mark> ,7/2-			
4.895	14.511	<mark>1/2-</mark> ,9/2+			

($lpha$,p $_0$) mea	surements S	Schier et al, 1976	С	seh et al, 2	1984: n	o defini	tive J^π is g	iven		Ea	Ex	Jpi
-	F			$^{19}F(\alpha, \alpha_0)^{19}F$ resonance parameters						2.606	12.62	1/2-
Ea	Ex	Jpi	$\overline{E^{a}}$	F ^b)		Įπ	Γ /Γ ٩	۲۹)	., ²	2.731	12.724	3/2+
2.538	12.564	<mark>3/2+</mark> ,3/2-	(MeV)	(MeV)	°a.		1 a/1)	(keV) (k	eV)	2.861	12.831	3/2+
2.639	12.647	<mark>3/2-</mark>	2.513	12.544	2	3+ 5+	0.23 0.16	6.6 76	52	2 001	17 8/18	2/2
2.742	12.732	5/2+, <mark>7/2-</mark>	2.632	12.642	{ 0	$\frac{1}{2}$	0.17	11	15	2.001	12.040	5/2-
3 036	12 975	1/2⊥ 7/2_	2.737	12.729	2	$\frac{1}{2}^{-}, \frac{5}{2}^{-}$ $\frac{3}{2}^{+}, \frac{5}{2}^{+}$	0.21, 0.11	13 34	18	2.904	12.866	3/2+
5.050	12.575		2.813	12.791	2	$\frac{3}{2}+, \frac{5}{2}+$	0.065, 0.045	11 1	2, 9	3.246	13.149	5/2+
3.165	13.082	<mark>1/2+</mark> ,7/2-	2.846	12.819	1	$\frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{3}{2}^{+}, 3$	0.37, 0.20	3.4 8.4	, 4.5	3.286	13.182	1/2+
3.266	13.165	<mark>5/2+</mark> ,7/2-	2.887	12.852	$\int 0^2$	$\frac{\overline{2}}{\frac{1}{2}}, \frac{\overline{2}}{\frac{1}{2}}$	0.11	5.5	2.3	3.298	13.192	1/2-
3.308	13.200	7/2-, <mark>9/2+</mark>	3 1 26	13.050	1	$\frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{3}{2}^{+}, \frac{3}{2}^{+}$	0.12, 0.064	12 8.4	4.5	3.310	13.2	9/2+
3.361	13.243	<mark>5/2+</mark> ,5/2-	3.151	13.071	1	$\frac{2}{1} - \frac{3}{2} - \frac{3}{2}$	0.39, 0.21	6.8 8.5	6.2 , 4.6	3.350	13.235	1/2-
3.548	13.398	<mark>3/2-</mark> ,7/2-	3.156 3.250	13.075 13.153	2	$\frac{3+}{2}, \frac{5+}{2}$ $\frac{3+}{2}, \frac{5}{2}$	0.21, 0.15	12 18	, 12	3,521	13.376	, 1/2-
3.735	13.552	1/2-, <mark>5/2+</mark>	3.302	13.195	0	$2^{2}, 2^{1}$ $\frac{1}{2}^{+}$	0.90	6.3	9 9	3 950	13 73	3/2+
3.87	13.664	<mark>5/2+</mark> ,7/2-	3 <mark>.359</mark> 3.467	<u>13.243</u> 13.332	3	$\frac{3}{2} + \frac{7}{2} + \frac{3}{2} + \frac{5}{2} + \frac{5}$	0.15, 0.11 0.24 0.17	12 24 23 18	, <u>18</u>	3 996	13 768	1/2-
4.115	13.866	1/27/2-	3.567	13.422	3	$\frac{2}{5}$ - , $\frac{2}{7}$ -	0.07, 0.053	15 8.3	, 6.3	4.027	12 802	1/2-
4.186	13.925	3/2-5/2+	3.621	13.459	1	2	0.69	22	20	4.037	12 012	1/2+
1.100	14 056	3/2-7/2-								4.170	13.912	1/2-
4.544 1 E	1/ 18/	$\frac{3/2}{2}, \frac{1}{2}$								4.330	14.044	3/2-
4.5	14.104	5/2-,5/2+								4.350	14.061	3/2-
4.616	14.280	<mark>3/2-</mark> ,3/2+	Cseh resonances were added with due care to						e to	4.456	14.148	3/2-
4.704	14.353	<mark>1/2+</mark> ,7/2-	ava:d	م م الم الم م		~				4.597	14.246	3/2-
4.825	14.453	<mark>1/2+</mark> ,7/2-	avold	aouble C	ountir	ıg						\sim
4.895	14.511	<mark>1/2-</mark> ,9/2+										\sim

All channels (alpha, alpha/p/n) included:

different resonances seen in different channels

In some cases, J^{π} had to be changed to keep good fit (magenta)

The J^{π} values for the Zwan et al. resonances were selected by the trial & error technique

Van Der Zwan et al, 1977 (α ,n) data:

no J^{π} given

Multichannel overview

¹⁹F(a,n)²²Ne cross section

- Limited energy range:
 - For lower part need to add the resonances
 from ENSDF/TUNL (Kuperus et. al, 1965)
 - High-energy threshold
 not included yet
 (currently focus on this energy region)

Multichannel overview, cont.

¹⁹F(a,a)¹⁹F cross section

Multichannel overview, cont.

¹⁹F(a,p)¹⁹F cross section

Conclusions so far

- R-matrix analysis of the alpha+¹⁹F (²³Na compound) system up to 3 MeV is <u>almost complete</u>.
- The simultaneous fits for all open channels is a rather difficult task mainly due to the scarce nuclear structure information
- Can we trust Schier's and/or our spin-parity assignments (based on trial and error)?
- Alternative approach: apply machine-learning algorithms to get the spinparities
- More experimental data are needed

Next steps

- Extend the R-matrix analysis to 5 MeV
- Include inelastic channels
- Include Balakrishnan et al. angleintegrated (alpha,n) data and other (alpha, p1) differential crosssection data
- Potential problem: quality of data

Goal

- Perform an evaluation up to 9 MeV incident alpha energies for applications
- Produce ENDF files
- Challenges:
 - Quality of data
 - Growing number of channels
 - Breakup channel: ¹⁵N+2 α ; threshold 4830 keV
- Solution to dealing with growing number of channels, break-up, etc.: Reduced R-matrix calculations – currently not implemented in AZURE2

Acknowledgements

- IAEA Special Service Agreement
- "2nd Call for H.F.R.I. Research Projects to support Faculty Members and Researchers" (Project Number: 4650/ARENA).