$^{22} Ne(\alpha, n)^{25} Mg \ deep \ underground$ IAEA Technical Meeting on (alpha,n) Reaction Nuclear Data Evaluations and Data Needs

Andreas Best

INFN Naples University of Naples "Federico II"

November 28, 2023

$^{22}\mathsf{Ne}(lpha,[\mathit{n},\gamma])^{25,26}\mathsf{Mg}$

Adsley et al. PRC 103, 015805

- ${}^{22}Ne(\alpha, n){}^{25}Mg$ contributes during late stages of main s process
- Determines branch point population
- Main source for weak s process
- Mg isotope observations in stellar atmospheres

э

2/14

(日)

(Direct) State of the Art

- Jaeger et al. 2001
- External background limiting factor (> 100 cts/hour)

A. Best (UniNa/INFN-Na)

Low-energy states

Table 1. Properties of states in ²⁶Mg between the neutron threshold and the 832 keV resonance. Values taken from [15], except for the last row, which is from [14].

E _n [keV]	E _x [keV]	E _a [keV]	Jπ	Neutron width [eV]
19.92	11112	589	2+	2095
72.82	11163	649	2+	5310
79.23	11169	656	3-	1940
187.95	11274	779	2+	410
194.01	11280	786	3-	1810
243.98	11328	843 ?	?	171
235 [14]	11319	832	2+	Total width = 250 eV

- nTOF study of energies and neutron widths (Massimi et al. PLB 768 (2017), 1)
- 832 keV res still a bit unclear w.r.t. n/α channel, energy
- No α widths are known
- Many other indirect data campaigns, not conclusive

イロト イヨト イヨト

22 Ne $(\alpha, n)^{25}$ Mg

- Capabilities on surface exhausted (20+ years since last data)
- Current lowest data 2 reactions/minute
- Covered one resonance close to Gamow
- Many states that can contribute
- 300 keV of upper limits...

Beam-induced backgrounds

• Q-values:

- ${}^{22}Ne = -478 \text{ keV}$
- ${}^{10}_{11}B = 1059 \text{ keV}$
- ▶ ${}^{11}_{10}B = 158 \text{ keV}$

At least 600 keV gap - any kind of energy ID helps

November 28, 2023

What to do?

- Suppression/identification of beam-induced background
- Drastic external background reduction
- Large beam current increase
- ullet ightarrow measure underground
- \rightarrow use new MV accelerator at INFN-LNGS Bellotti Ion Beam Facility

Background reduction

- Deep underground @ LNGS: Suppression of (thermal) neutron background by > 1000
- Additional clean detector material & PSD
- Extended gas target with enriched ²²Ne
- Coincidence/Anticoincidence (at high count rates)
- $\bullet\,$ Total background $\approx 1 \ {\rm count/hour}$

New MV accelerator

lon specie	Beam intensity (eµA)			
	TV range 0.3 MV-0.5 MV	TV range 0.5 MV–3.5 MV		
1H+	500	1000		
⁴ He ⁺	300	500		
12C+	100	150		
¹² C ⁺²	60	100		

- Specifically designed to fit nuclear astrophysics needs
- Reaction rates of < 1/hour:
 - Beam current ($\approx 5\times$ Jaeger et al.): push signal-noise ratio
 - Current stability: measurements of the order of weeks
 - Energy stability: must not drift over long periods
- 300 3500 kV: cover entire astrophysical energy range
- Sen et al. NIM B 450 (2019), 390

Measurement strategy

- Need to measure very low event rates
- Require some sort of energy sensitivity
- Hybrid detector array: ³He counters & liquid scintillator
- Coated apertures
- High efficiency + partially energy sensitive
- Gas target (recirculating) for long, uninterrupted runs

Goals

- Cover from threshold to 3.5 MeV
- Aim at two orders of magnitude improvement
- Efficiency determination with ¹³C(α, n)¹⁶O (underground)
- Efficiency determination with ${}^{51}V(p, n){}^{51}Cr$ (surface)
- Comprehensive R matrix analysis
- Perform nucleosynthesis calculations with new data

Status I

• 5(+1)-year, since February 2020

- 1st target characterisation at CIRCE
- Detector background investigated
- Detector characterisation at FRANZ
- Assembled at LNGS in July/August
- Underground campaign at LUNA MV
- Data evaluation and astrophysical impact collaboration with M. Pignatari/Budapest

Status II

- Detector background investigated - submitted
- Detector characterisation at FRANZ - under analysis

180 20 Energy (keVee)

э

Summary

- Steady influx of indirect data, need some direct input
- Push direct cross section into Gamow energy with SHADES
- Experimental campaign started last week to continue through 2024
- IBF is a user facility yearly proposal submission
- Strict neutron production limit of 2000/s