(α, n) yields for rare-event search experiments: a collaborative effort to understand the backgrounds

Roberto Santorelli

CIEMAT

IAEA Technical Meeting on (α ,n) nuclear data evaluation and data needs 30/11/2023

Reminder

- Invisible dark matter makes up most of the universe
- The nature of dark matter is one of the most fundamental problems in modern physics and cosmology

Direct Detection of DM: Low energy nuclear recoil

Possible scalar (coupling to the mass of the nucleus) and spin-spin interactions (coupling to the nuclear spin)

 $m_W = WIMP mass (~GeV-TeV) -- For M_W ~100GeV:$

- σ = WIMP-nucleus and WIMP-nucleon scattering x-sec ($\leq 10^{-47}$ cm²)
- $\rho_0 = \text{local WIMP density} \quad \rho_0 \sim 0.3 \text{GeV/cm}^3 \rightarrow Flux \sim 10^5$ WIMPs/cm²/s)

Signal vs Background

DD backgrounds: γ,β

- α : higher energy depositions
- μ : underground + veto

• γ,β : ER \rightarrow shielding + <u>discrimination</u>

DD backgrounds: n

n : neutrons can produce nuclear recoil in the WIMP search region of interest

Multiplicity

Simulated neutron multiple scattering: ~70% of neutrons produce multiple site events

- Tagging
- Cosmogenic (spallation, βn...)
- Neutrons from the rock
- Radiogenic neutrons from distant materials

 $(\alpha,n\gamma)$ might be subdominant in most of the cases with respect to (α,n) but is still very relevant for us

Radiogenic n from detectors materials

• Limited tagging capability for the radiogenic n from the parts surrounding the active volume (and in the active volume)

- Strategy: Assay all materials of the detector
- Worldwide effort Canada, Italy, France, Poland, Russia, Spain, UK, US...
- Counting facilities in four Underground laboratories involved (Boulby, LNGS, LSC, SNOLAB)
- 3 different techniques employed: ICPMS, HPGe, Po extraction for Upper, Middle and Lower ²³⁸U chain

238U chain

Typical elements

• Try to avoid Be and B, F (as much as possible)

- AI, N, B (+Si, Mg...) Resistors \rightarrow PCB C, N, O... • \rightarrow Acrylic C, O \rightarrow Teflon C, F SS, Cu, Ti... Mechanical parts \rightarrow Si... Sensors \rightarrow
- Target \rightarrow Ar, Xe, Ge....

(a,n) on Argon

SaG4n

Neutron yield $\propto \int \Theta_{\alpha}(E) \sigma_{(\alpha,xn)}(E) dE$

(SRIM+ TALYS

... or EMPIRE, truly evaluated cross sections and secondary particle products)

SaG4n is a code fully based on Geant4 that we have developed to calculate neutron yields.

"Neutron production induced by α-decay with Geant4", Nucl. Instrum. Methods A 960, 163659 (2020) (http://win.ciemat.es/SaG4n/)

Use of a single Monte Carlo code

- flexible in the selection of the data libraries
- it needs a Geant4 installation but it can easily executed only by editing an input file

Advantages:

- it allows for almost arbitrarily complicated geometries
- Surface effects and boundary between different materials
- α transportation (electromagnetic processes)

the lan neutron background fully

(α,n) yield in low background experiments WG

- The calculation and the mitigation of the background minimization for the new generation of low-background experiments (DM, 0vββ) demand an unprecedented effort.
- This endeavor requires a collective commitment from the entire rare event physics community, leveraging diverse synergies and expertise.

- "(α,n) yield in low background experiments" Workshop 21-22 November 2019, CIEMAT, Madrid, Spain <u>https://agenda.ciemat.es/event/1127/</u>
- WG including ~ 35 researchers from several experiments (ANAIS, CRESST, DarkSide, DEAP-3600, LZ, nEXO, XENON, PICO, SNO+, SuperCDMS...)
- <u>alphan@ciemat.es</u>
- Snowmass2021 LOI: "Neutron yield in (α,n)-reactions in rare-event searches" link.pdf

White paper

White paper on (α, n) neutron yields calculation

Authors¹

¹Somewhere

(Dated: Thursday 30th November, 2023- 12:59, Version: F1.0)

Understanding the radiogenic neutron production rate through the (α, n) reaction is essential in many fields of physics like dark matter searches, neutrino studies, nuclear astrophysics and medical physics. This white paper provides a review of the current landscape of (α, n) yields, neutron spectra, and correlated γ -rays calculations, and describes the existing tools and the available cross sections. The uncertainties that contribute to (α, n) yield calculations are also discussed with the plans for a program to improve the accuracy of the estimates. Novel ideas to measure (α, n) cross sections for a variety of materials of interest are presented. The goal of this study is to reduce the uncertainty in the expected sensitivity of next-generation physics experiments with keV–MeV measurements.

CONTENTS

I. Introduction	2
II. Process Description	3
III. Importance of the (α,n) reactions in different fields and relevant isotopes	4
A. Searches for rare events	4
1. (α, n) induced backgrounds	E
2. Material screening techniques to suppress alpha emission	6
B. Nuclear astrophysics	ç
C. Neutron sources	g
D. Nuclear fuel	10
E. Medical applications	10
IV. Measured and calculated (α,n) cross sections	12
A. Databases	13
B. Models	15
V. Neutron yield calculation tools	18
A. Stopping power calculation	18
B. SOURCES4	19
C. NeuCBOT	20
D. SaG4n	2
E. Comparison between the codes	2
VI. Typical uncertainties in neutron yield calculations	2
A. Cross sections: experimental data and nuclear model parameters	2
B. Assay results	2
C. Material composition	3
VII. Proposals: Neutron yield measurementetc	3
References	32

A little spoiler

- Discussion on the need of multiple assays
- Material composition
- Uncertainty in the calculation
- Uncertainty from the input parameters (Ar-40 x-section with TALYS)
- Comparison between different codes
- Need of more data ...

ECFA Detector R&D Roadmap

"A roadmap should be developed by the community to balance the detector R&D efforts in Europe, taking into account progress with emerging technologies in adjacent fields. The roadmap should identify and describe a diversified detector R&D portfolio that has the largest potential to enhance the performance of the particle physics programme in the near and long term".

"The mandate is to focus on the technical aspects to realise the research facilities in a timely fashion, and to provide strategic guidance for detector development at large, in synergy with neighbouring fields and industrial applications"

Organization to structure the consultation with the community	
RECFA Plenary ECFA regular reports & final document for community endorsement Publication	
Detector R&D Roadmap Panel assist ECFA to develop & organise the process and to deliver the document Coordinators: Phil Allport (chair), Silvia Dalla Torre, Manfred Krammer, Felix Sefkow, Ian Shipsey assist ECFA to identify technologies & conveners Ex-officio: ECFA chairs (previous and present), LDG representative Selentify Escretary: Susanne Kuehn	
TF#1 Genous Detactors Not College Labor detactors TF#3 Sold State Detactors TF#4 Proteins Detactors TF#5 Clansing Tehnologies TF#6 Clansing Tehnologies TF#6 Clansing Tehnologies TF#6 Clansing Tehnologies TF#6 Clansing Tehnologies TF#6 Clansing Tehnologies TF#6 Clansing Tehnologies TF#6 Clansing Tehnologies TF#6 Clansing Tehnologies TF#6 Clansing Tehnologies TF#6 Tehnologies TF#6 Tennologies TE#6 Tennologi	
Consultation with the particle physics community & other disciplines with technology overlap	

DRD2: Liquid Detectors v4

New tools/materials for the evaluation/suppression of backgrounds Neutrons are one of the main sources of background in rare-event search experiments. For the accurate calculation of radiogenic neutron production rates, it will be crucial to measure the (α, n) production cross-section in those materials relevant to the construction of low-background detectors for which experimental measurements are not available (e.g., argon). In parallel, significant research efforts are expected in the coming years to investigate innovative configurations of active veto technologies based on new materials for neutron background mitigation, e.g. R&D is currently ongoing aimed at producing a large amount (few tens of tons) of radiopure acrylic loaded with a gadolinium compound.

Conclusions

- The new generation of rare-event research experiments requires very careful background characterization
- The detailed calculation of the (α,n) yields is the key aspect to understand the background in this type of experiments.
- A working group of particle physicists has been formed
- White paper almost finalized (internal review)
- ECFA detector R&D: our community is starving for new measurements and new data

Backup

The Dark Matter problem (🖕)

- The ΛCDM model has been successful explaining CMB, large scale structure etc..
- It fits all the observations with only 6 parameters
- A Cold Dark Matter model is necessary for the formation of structure and galaxies in the universe

Roberto Santorelli - IAEA (α,n) Meeting 30/11/2023

DD backgrounds: μ

- α : higher energy depositions
- μ : underground + veto 10-2 Radon-free Clean Room Y2L LSC Muon flux (m 10-3 TPC ARF Kamioka Electronics Boulby LNGS SUPI Water Tank 104 CallioLab Liquid Scintillator ANDES Veto SURF LSM Baksaan 10-5 LAT TPO **Mei-Hime flat Earth** Australia approximation New Zealand Aroentin SNOLAB CJPL-II 10

500

1000

1500

2000

2500

DD backgrounds: n-produced externally

Passive and active shielding can mitigate the impact of the neutrons produced externally

- Cosmogenic (spallation, βn...)
- Neutrons from the rock
- Radiogenic neutrons from distant materials

N-yields: Values for 1 ppb Th-232 and U-238 (U-235 with its natural abundance)

The Galactic DM Halo

- Dark Matter distributed in a spherical halo around the Milky Way
- Isothermal Maxwell-Boltzmann velocity distribution 220 km/s and V_{esc}=544 km/s
- V_e~245 km/s WIMP velocity relative to Earth
- Local density = 0.3 GeV/cm³ J.Bovy S.Tremaine APJ 756 2012

 $(3000 \ wimp/m^3, m_W = 100 \text{GeV})$

22

Radiogenic n from detectors materials

- Full control of the radioactive contamination
- Control of the bulk contamination
- Control of the surface contamination
- Rn exposure
- Storage

- Detailed calculation of the materials background
- New tools for (α, n) calculations -> SaG4n
- MC Simulation -> G4 + FLUKA
- Evaluation of the systematic uncertainty from the material composition