Technical Meeting on (alpha,n) Reaction Nuclear Data Evaluations and Data Needs

Status and perspectives of thick target measurement of (alpha,n) reactions using the miniBELEN detector

Ariel Tarifeño-Saldivia

Instituto de Física Corpuscular C.S.I.C – Universidad de Valencia Spain atarisal@ific.uv.es

On behalf of the MANY collaboration

VNIVERSITAT IAEA Tech. Meet. (alpha,n) reactions Nuclear Data DÖVALÈNCIA Eval and Data Needs, 27 Nov - 01 Dec 2023

OUTLINE

- The MANY collaboration
- The miniBELEN-10A detector
- Commissioning of miniBELEN-10A at CMAM
- Production yields for 27Al(alpha,n)
- Perspectives

VNIVERSITAT IAEA Tech. Meet. (alpha,n) reactions Nuclear Data DÖVALÈNCIA Eval and Data Needs, 27 Nov - 01 Dec 2023

The MANY Collaboration

Two Spanish facilities

Infraestructuras

Científicas v

C Guerrero's **Three Spanish detectors** slides

A Pérez de Rada's slides

NST

MADRID

CRSIDAD

LM Fraile's slides

N. Mont's slides

The miniBELEN detector: conceptual design

- Neutron counter based on a modular High Density Polyethylene (HDPE) moderator.
- MC calculations using ³He-filled proportional counters (60 cm active length and 10 atm).
- Optimized design for (alpha,n) reactions producing neutrons up to 8-10MeV.
- Flat neutron efficiency is achieved by weighting the contribution of each detector group to the overall detection efficiency (composition method).
- Flexible system: re-configurable for 3 optional setups

N. Mont, Master thesis, U. Sevilla, 2020. N. Mont et al. arXiv:2205.02147 (2022)

MiniBELEN-10A:

- 10 ³He-tubes, 3 rings
- Moderator: 58x43x70cm³
- Reflector 4cm thickness
- Nominal efficiency up to 8 MeV:

 $\varepsilon_{nominal} = 7.0 \pm 0.5 \%$

MiniBELEN-10B:

- 10 ³He-tubes, 2 rings
- Moderator: 50x49x70cm³
- Nominal efficiency up to 8 MeV:

 $\varepsilon_{nominal}$ = 5.4 ± 0.3 %

MiniBELEN-12:

- 12 ³He-tubes, 3 rings
- Moderator: 50x35x70cm³
- Reflector 4cm thickness
- Nominal efficiency up to 8 MeV:

 $\varepsilon_{nominal} = 8.4 \pm 0.6 \%$

MiniBELEN-10A: final assembly

MB-10A version 2021: ³He-tubes @ 7x 10 atm. 1x 4/8/20 atm

MC simulations by the Geant4 Particle application *ParticleCounter*.

- Detector assembled and operative since Jan 2021.
- Nominal efficiency fully determined by MC simulations (GEANT4).
- Experimental characterization by means of NMC with ²⁵²Cf source. Good agreement with G4 simulations.
- Detector table designed to be compatible with beamlines at CMAM and CNA.

N. Mont, PhD thesis (UPC)

MiniBELEN-10A: commissioning at CMAM

miniBELEN-10A commissioning test @ CMAM:

MiniBELEN-10A (neutron counter):

- HDPE moderator.
- Versions: 2021 & 2022.
- External cadmium and boron shielding.
- Shielding in beam (removable).

Ancillary detectors:

• LaBr3 or HPGe detector (gamma detectors).

Target & Faraday Cup (FC):

- Al, Be and Ta thick targets (100 um). Ta is used for background assessment.
- Current integrator: Ortec 439.

* CS

- FC with 7 mm diameter Ta collimator.
- +300 V current supressor.

CMAM accelerator (α -particles, q = +2).

Commissioning: data acquisition

GASIFIC7: IFIC Digital AcQuisition system

Portable digital acquisition system:

- Based on the digitizer Struck SIS3316.
- Controlled by GASIFIC70 via ethernet conection.
- 16 channels, triggerless mode.
- Online and offline acquisition modes.
- Pulse height analysis by using digital trapezoidal filter.
- Internal timestamp, ideal for data sorting and correlation analysis.
- For use with neutron counters, silicon detectors, HPGe, scintillators, etc.
- Dead-time is determined by software (trigger gate length).

SIS3316 Characteristics:

- 250MHz sampling digitizer 125MHz Band width
- 64MSamples memory/channel (in two swap pages)
- Readout simultaneous to acquisition
- 14-bit resolution (12 effective bits)

During the commissining at CMAM we have tested two possible DAQ configuration on the trigger gate length: - 9 us (MB-10A/v2021)

- 3.2 us (MB-10A/v2022)

GASIFIC7 is described in Agramunt et al. NIMA (2016) 69-78

Commissioning: data acquisition

#CSI

Commissioning: dead-time & pile-up effects

- Our DAQ (GASIFIC7) is a non-paralizable system by construction.
- We successfully emulate the firmware.
- The data stream is reconstructed by assuming a event time difference distribution ~ Exp(-R·t).
- The true event rate (R) is obtained by fitting the experimental amplitude spectrum of the neutron counter.

Commissioning: dead-time & pile-up effects

VNIVERSITAT IAEA Tech. Meet. (alpha,n) reactions Nuclear Data

anieno-Saluivia

Background yield

In-beam background

FIC CSIC

VNIVERSITAT IAEA Tech. Meet. (alpha,n) reactions Nuclear Data

 $^{
m 27} Al(lpha$, $n)^{
m 30} P$

- Stable isotope, 100% natural abundance, non toxic, god conductor, accessible target!
- One of the better known alpha production yields. Latest evaluation from 2015 (Vlaskin et al.)
- Relative low reaction threshold:

 27AI + α

 Reaction Products
 Q-Value (keV)
 Threshold (keV)

 ³⁰P + NN
 -2642.41 8 3014.81 9

 It has been suggested as a candidate for reference (α,n) cross sections for use in relative measurements, and beam monitor cross sections needed to determine the incident alpha-particle flux (INDC(NDS)-0836).

Neutron yield from direct neutron counting using miniBELEN-10A

Y = neutron yield R = miniBELEN neutron rate I = beam current (particles/s) ε = miniBELEN neutron efficiency

Determined from the current integrator

Neutron counting rate

Nominal efficiency determined from MC simulations (contributes to the systematic!)

- We assume low sensitivity to angular distributions in MB-10A.
- The ratio *R/I* is determined in real-time, so that we can reduce systematic due to beam fluctuation.

N. Mont-Geli, PhD thesis (2024) Preliminary results: N. Mont-Geli et al. (2023) arXiv:2304.07311 MiniBELEN-10A commissioning full manuscript in preparation.

VNIVERSITAT IAEA Tech. Meet. (alpha,n) reactions Nuclear Data

N. Mont-Geli, PhD thesis (2024) Preliminary results: N. Mont-Geli et al. (2023) arXiv:2304.07311 MiniBELEN-10A commissioning full manuscript in preparation.

VNIVERSITAT IAEA Tech. Meet. (alpha,n) reactions Nuclear Data

N. Mont-Geli, PhD thesis (2024) Preliminary results: N. Mont-Geli et al. (2023) arXiv:2304.07311 MiniBELEN-10A commissioning full manuscript in preparation.

VNIVERSITAT IAEA Tech. Meet. (alpha,n) reactions Nuclear Data

1) "First" physics measurement is on-going:

- 27Al(alpha,n) cross section derived from thick target yields (see N. Mont's slides)

2) Next isotope to be measure:

PBe + α
Q-Value (keV)Threshold (keV) $^{12}C + NN$ 5702.0 10

- Target is already available (purity 99.99%).
- First test has been already performed at CMAM.
- Preliminary results suggest the need of low efficiency ³⁰ setup in order to reduce systematics.

3) Instrument development:

- Low detection efficiency setup from MB-10A, Target efficiency ~2%.
- A new sample holder allowing to interchange samples without the need of breaking vacuum.

4) Commissioning of miniBELEN-10A at CNA beamline

(see C. Guerrero's talk)

VNIVERSITAT IAEA Tech. Meet. (alpha,n) reactions Nuclear Data Deta

The MANY collaboration:

V. Alcayne⁶, A. Algora², O. Alonso-Sañudo³, J. Balibrea-Correa², J. Benito³, M. J. García-Borge⁵, J. A. Briz³, F. Calviño¹, D. Cano-Ott⁶, G. Cortés¹, A. De Blas¹, C. Domingo-Pardo², A. Espinosa³, B. Fernández⁷, L. M. Fraile³, G. Garcia⁴, R. García¹, V. García-Tavora⁴, J. Gómez-Camacho⁷, E.M. González-Romero⁶, C. Guerrero⁷, A. Illana³, J. Lerendegui-Marco², M. Llanos³, T. Martínez⁶, V. Martínez-Nouvilas³, E. Mendoza⁶, N. Mont-Geli¹, JR. Murias³, E. Nácher², A. Nerio-Aguirre⁵, V. V. O. Onecha³, S. Orrigo², M. Pallàs¹, A. Perea⁵, A. Pérez de Rada⁶, V. Pesudo⁶, J. Plaza⁶, J.M. Quesada⁷, A. Sánchez⁶, V. Sánchez-Tembleque³, R. Santorelli⁶, J.L. Tain², A. Tarifeño-Saldivia², O. Tengblad⁵, J.M. Udías³, D. Villamarín⁶ and S. Viñals⁴

¹ Institut de Tècniques Energètiques (INTE), Universitat Politècnica de Catalunya (UPC), E-08028, Barcelona, Spain

² Instituto de Física Corpuscular (IFIC), CSIC – Univ. Valencia (UV), E-46071, Valencia, Spain

³ Grupo de Física Nuclear (GFN) and IPARCOS, Universidad Complutense de Madrid (UCM), E-28040,

Madrid, Spain

⁴ Centro de Micro-Análisis de Materiales (CMAM), Universidad Autónoma de Madrid (UAM), E-28049, Madrid, Spain

⁵ Instituto de Estructura de la Materia (IEM), CSIC, E-28006 Madrid, Spain

⁶ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-28040, Madrid, Spain
⁷ Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla (US), E-41012 Sevilla, Spain
⁸ Centro Nacional de Aceleradores (CNA) (Universidad de Sevilla - Junta de Andalucía - CSIC), E-41092, Sevilla, Spain

THANKS!

