Measurement of ²⁷Al(α,nγ)³⁰P thick-target yields and total ²⁷Al(α,n) yields by activation

L.M. Fraile

Grupo de Física Nuclear & IPARCOS Universidad Complutense, Madrid, Spain

The MANY Collaboration

Two Spanish facilities

Three Spanish detectors

O Alonso-Sañudo, L.M. Fraile, J Benito, JA Briz, A Espinosa, A Illana, M Llanos, V Martínez-Nouvilas, JR Murias, VVO Onecha, V Sánchez-Tembleque, JM Udías

N Mont-Geli, M Pallàs, F Calviño, G Cortés, A De Blas, R García

A Tarifeño-Saldivia, JL Taín, A Algora, J Balibrea-Correa, C Domingo-Pardo, J Lerendegui-Marco, E Nácher, SEA Orrigo

- G García, V García Tavora, S Viñals
- O Tengblad, MJG Borge, A Perea, A Nerio Aguirre

D Cano-Ott, T Martínez, E Mendoza, A Pérez de Rada, V Alcayne, EM González-Romero, V Pesudo, J Plaza, A Sánchez, R Santorelli, D Villamarín

C Guerrero, B Fernández, J Gómez-Camacho, JM Quesada

The MANY Collaboration

Ciernote Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas

Centre for Micro Analysis of Materials (CMAM)

M. Fraile

The CMAM tandetron

HVee tandem

M. Frail

5 MV maximum terminal voltaje Cockroft-Walton acceleration Two sources: a **plasmatron** (HVE-358) source for gaseous substances and a **negative sputtering** (HVE-860C) source for (almost) any element from solid targets.

The CMAM tandetron

Maximum of (Z+1) x 5 MeV beams, minimum energy below 300 keV with decent ripple. Terminal voltage was originally calibrated using 11 different nuclear reactions. Recalibration was required after replacement of faulty diodes (2013), about 0.3% deviation found.

Beam pulsing via chopper and buncher

Pulsed beam installation and commissioning foreseen within window APR-JUN 2024

Technical meeting held between to prepare the commissioning of the pulsed beam.

Proposal for commissioning with **alpha beams** before April 2024, for execution soon after installation

First experiments July 2024

Development of the experimental setup

mber 2023

Interest of (α, n) reactions:

- nuclear technologies
- dark matter searches
- neutrino physics
- nuclear astrophysics

Experimental (α, n) cross sections exist in literature, but...

- cross section data available in the EXFOR database show large discrepancies, not compatible with the declared uncertainties.
- spectroscopic information is available only for a limited number of isotopes.
- Libraries: JENDL-AN-2005 and the TENDL series show important differences

The origin of heavy elements in the solar system

Nuclear astrophysics

- \cdot sources of neutrons for the slow neutron-capture process
- \cdot radionuclide production by energetic solar particles
- · nucleosynthesis of light r-process nuclei in n-driven winds

 \cdot optical potentials

Abundance peaks: n capture along valley of stability \rightarrow s-process

slow neutron captures

Weak r-process

· light neutron-rich nuclei

Impact of (α, n) reactions on weak r-process in neutrino-driven winds

J Bliss¹, A Arcones^{1,2,4,5}, F Montes^{3,6} and J Pereira^{3,6}

¹ Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany

² GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, D-64291 Darmstadt, Germany

³ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, United States of America

Figure 4. Theoretical ⁶⁹Ga(α , *n*) ⁷²As, ⁸⁴Se(α , *n*) ⁸⁷Kr, ⁹⁴Sr(α , *n*) ⁹⁷Zr, and ¹⁰⁰Mo(α , *n*) ¹⁰³Ru reaction rates using the alpha optical potentials: global alpha optical potential (GAOP) [36, 53], phenomenological fit of McFadden and Sachtler (MS) [54], three different versions of the model of Demetriou-Grama-Goriely (DGG1-3) [36, 55] (the other nuclear inputs are determined from the default set of sources given in [33], with the exception of masses, which were taken from [56] if available, or from the FRDM mass model [57] otherwise). The reaction rates are normalized to the ones calculated with the GAOP model.

Theoretical x-sections Optical potentials

Impact of (α, n) reaction rate uncertainties on the abundances

Activation cross section measurement of the ${}^{100}Mo(\alpha,n){}^{103}Ru$ reaction for optical potential studies

T.N. Szegedi^{1,2}, G.G. Kiss¹, Gy. Gyürky¹ and P. $Mohr^{1,3}$

 1 Institute for Nuclear Research, Bem square 18/c, H-4026 Debrecen, HU 2 University of Debrecen, Egyetem ter 1, H-4032 Debrecen, HU 3 Diakonie-Klinikum, D-74523 Schwäbisch Hall, Germany

Measurements by activation

Cross sections of $\alpha\text{-induced}$ reactions for targets with masses A \approx 20–50 at low energies

Fig. 20. Cross sections of the ⁴⁰Ca(α , n)⁴³Ti, ⁴⁰Ca(α , p)⁴³Sc, and ⁴⁰Ca(α , γ)⁴⁴Ti reactions. The experimental data have been taken from [70,82,50]. The additional dash-dotted line shows the StM calculation for the (α , γ) reaction. Further discussion see text.

Figure 3. Preliminary 100 Mo(α ,n) 103 Ru thick target yield results compared to theoretical predictions calculated using the Talys 1.8 code (red line), Non Smoker code (blue dashed line) and a simple transmission model calculation (green dotted line).

Countrate estimates at low E (go underground!)

$^{22}Ne(\alpha,n)^{23}Mg$	$^{13}C(\alpha,n)^{1}$	$^{13}C(\alpha,n)^{16}O$				
E _x = 10.9 – 11.5 MeV	$E_{r}^{CM} = 150$	$E_{r}^{CM} = 150 \text{ keV to } E_{r}^{CM} = 230 \text{ keV}$				
S_{α} =10.6 MeV	σ≈10 ⁻¹³ b					
2 counts/hour	I (⁴ He) ≈ 100 μA and n detection eff of η ≈ 50%	0.5 counts/hour				
10^{2} 10 10 10 10 10 10 10 10 10 10 10 10 10	Heil et the formula of the formula	al., Phys. Rev. C 78, 025803 (2008)				

Isotope	EXFOR	JENDL	Isotope	EXFOR	JENDL	Isotope	EXFOR	JENDI
⁶ Li	Yes	Yes	⁷ Li	Yes	Yes	⁸ Li	Yes	No
^{9}Be	Yes	Yes	^{10}B	Yes	Yes	¹¹ B	Yes	Yes
^{12}C	No	Yes	^{13}C	Yes	Yes	¹⁴ N	Yes	Yes
^{15}N	Yes	Yes	¹⁶ O	Yes	No	¹⁷ O	Yes	Yes
¹⁸ O	Yes	Yes	19 F	Yes	Yes	²⁰ Ne	Yes	No
21 Ne	Yes	No	²² Ne	Yes	No	²³ Na	Yes	Yes
^{24}Mg	Yes	No	²⁵ Mg	Yes	No	²⁶ Mg	Yes	No
²⁷ A1	Yes	Yes	²⁸ Si	Yes	Yes	²⁹ Si	Yes	Yes
³⁰ Si	Yes	Yes	³¹ P	Yes	No	³⁴ S	Yes	No
^{35}Cl	Yes	No	⁴¹ K	Yes	No	⁴⁰ Ca	Yes	No
^{48}Ca	Yes	No	^{45}Sc	Yes	No	⁴⁶ Ti	Yes	No
48 Ti	Yes	No	^{51}V	Yes	No	⁵⁰ Cr	Yes	No
^{55}Mn	Yes	No	⁵⁴ Fe	Yes	No	⁵⁹ Co	Yes	No
58Ni	Yes	No	⁶⁰ Ni	Yes	No	⁶² Ni	Yes	No
64Ni	Yes	No	⁶³ Cu	Yes	No	⁶⁵ Cu	Yes	No
⁶⁴ Zn	Yes	No	⁶⁶ Zn	Yes	No	⁶⁸ Zn	Yes	No
70 Zn	Yes	No	⁶⁹ Ga	Yes	No	⁷¹ Ga	Yes	No
70 Ge	Yes	No	⁷² Ge	Yes	No	⁷⁴ Ge	Yes	No
76 Ge	Yes	No	⁷⁵ As	Yes	No	⁷⁶ Se	Yes	No
⁸⁶ Sr	Yes	No	⁸⁹ Y	Yes	No	⁹³ Nb	Yes	No
^{92}Mo	Yes	No	^{94}Mo	Yes	No	^{100}Mo	Yes	No
$^{98}\mathrm{Ru}$	Yes	No	¹⁰⁷ Ag	Yes	No	¹⁰⁹ Ag	Yes	No
115 In	Yes	No	^{121}Sb	Yes	No	^{123}Sb	Yes	No
130 Te	Yes	No	^{127}I	Yes	No	¹³¹ Ta	Yes	No

TABLE I. Isotopes for each (α, n) cross sections are catalogued in the EXFOR and JENDL databases

evaluations/nuclear data and simulate yields (https://tendl.web.psi.ch/tendl 2019/talys.html) TALYS (TENDL) vs. evaluated data (JENDL-AN-2005) show differences

Yields are relevant but the energy distribution of neutrons depends on crosssection details

Angular correlation effects are (generally() assumed to be negligible.

(α, n) and α -induced reactions in fusion

Fusion Engineering and Design 86 (2011) 1298-1301

Fusion alpha loss diagnostic for ITER using activation technique

G. Bonheure^{a,*}, M. Hult^b, R. González de Orduña^b, P. Vermaercke^c, A. Murari^d, S. Popovic

^a Laboratory for Plasma Physics, TEC Partner Association "Euratom-Belgian State", Royal Military Academy, Avenue de la Renaissance, 30, Kunstherle Belgium ^b Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel, Belgium ^c SCK CEN, Boeretang, B-2400 Mol, Belgium ^d Association EURATOM/ENEA, Consorzio RFX, 4-35127 Padova, Italy ^e EURATOM/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB, UK ^f Association Euratom-IPP.CR, Institute of Plasma Physics AS CR, v.v.i., Za Slovankou 3, CZ-182 00 Praha 8, Czech Republic Section (barns)

Plasma Phys. Control. Fusion 46 (2004) S107-S118

INSTITUTE OF PHYSICS PUBLISHING

PLASMA PHYSICS AND CONTROLLED FUSION

PII: S0741-3335(04)74980-5

Cross

Overview of neutron and confined/escaping alpha diagnostics planned for ITER

M Sasao¹, A V Krasilnikov², T Nishitani³, P Batistoni⁴, V Zavervaev⁵, Yu A Kaschuck², S Popovichev⁶, T Iguchi⁷, **O** N Jarvis⁶, J Kallne⁸, C L Fiore⁹, L Roquemore¹⁰, W W Heidbrink¹¹, A J H Donne¹², A E Costley¹³ and C Walker¹⁴

MOTIVATIONS

- Reference reaction: benchmarking
- Test new beamline at CMAM
- Develop and optimize new setup
- Crosscheck measurements: direct neutrons*, gamma rays and activation

* Neutron measurements with MINBELEN at CMAM described by Nil Mont et al. yesterday

²⁷Al(α ,n)³⁰P available data

GARY detection setup

Gamma-detector array for Alpha-induced Reaction Yield measurements

LaBr₃(Ce) based array

HPGe detectors

Monitoring neutron detectors

Example calibration LaBr₃(Ce) spectra

PMTs spectra for 152Eu

Measurements

Productos de la reacción	Q-value (keV)	Threshold (keV)
$^{31}P + \gamma$	9668.60	0
$^{30}Si + \gamma$	2372.04	0
$^{27}Al + \alpha$	0	0
$^{30}P+$ n	-2642.41	3034.40
$^{29}Si + d$	-6012.59	6904.52

Energy range from ~3-15 MeV.# Online measurements and activation# Decay measurement when possible

Gamma-ray identification at 15 MeV

Activation measurements

Activation measurements

- Using decay of 511 keV when possible
- Using total rate (activation + decay)
- Using activation time
- HPGe seems to work fine
- LaBr₃(Ce) array

Measurements available up to 14 MeV

Preliminary total ${}^{27}AI(\alpha,n)$ yields from activation

L.M. Fraile

Prompt gamma-ray measurements

Spectrum while current=cte

Preliminary ²⁷Al(α ,n γ)³⁰P thick-target yields

Gamma yields

Eur. Phys. J. A (2015) 51: 56

Review

Peter Mohr^{1,2,a}

DOI 10.1140/epja/i2015-15056-5

 $A \approx 20-50$ at low energies

¹ Diakonie-Klinikum, D-74523 Schwäbisch Hall, Germany
 ² Institute for Nuclear Research ATOMKI, H-4001 Debrecen, Hungary

Angular distributions

THE EUROPEAN

PHYSICAL JOURNAL A

TABLE I. Angular distributions for the $C^{13}(\alpha, n)$ reaction.

Compound state angular	P		Coefficient of	D.	Р.
momentum	Po	P_2	P_1	$P \in$	1 8
1/2±	2				
3/2±	4	4			
5/2±	6	48/7	36/7		
7/2+	8	200/21	648/77	200/33	
9/2±	10	400/33	1620/143	320/33	980/143

Interference terms between states of same parity

1/2 - 3/2	-4	
1/2-5/2	6	
1/2 - 7/2		-8
3/2-5/2	$-12/\tilde{i}$	-72/7
3/2-7/2	72/7	40/7
	and the second sec	and a second sec

Analysis of Angular Distributions in the $C^{11}(\alpha, n)O^{16}$ Reaction*

Cross sections of α -induced reactions for targets with masses

J. P. SCHIFFER,[†] ALFRED A. KRAUS, JR.,[‡] AND J. R. RISSER The Rice Institute, Houston, Texas (Received September 4, 1956)

From the study of the angular distributions in the $C^{10}(\alpha,n)O^{10}$ reaction, angular momentum assignments have been obtained for thirteen states of the compound nucleus, O^{10} . Some relative parity assignments were made on the basis of interference effects.

 $\sigma(\theta) \sim \sum_{\nu} Z(lJlJ, 1/2\nu)^2 P_{\nu}(\cos\theta).$

Specific case for 0^+ g.s.

Preliminary angular information

 $^{27}AI(\alpha, \alpha'\gamma)^{27}AI$

Sizeable differences as a function of angle Work ongoing...

Commissioning of CMAM beamline and gamma detection setup
We face issues with reproducibility of beam focussing, positioning, stability
New target system with movable faces
Current monitoring seems to be fine
Bunching coming soon

Re-measurement of ²⁷Al(α,n)³⁰P reaction by activation - measurement during activation and decay consistent (online + decay) # (alpha,n gamma) measurement - gamma yields (thick target)

Dead time effect might be relevant at high energies

Analysis almost ready (Odette Alonso-Sañudo) Paper being drafted Instrumentation and methods should be described in a technical paper