

Innovative analysis technique of neutron time-of-flight spectra, validation, and first results in (α, n) reaction studies

Alberto Pérez de Rada Fiol

D. Cano-Ott, T. Martínez, V. Alcayne, E. Mendoza, J. Plaza, A. Sanchez-Caballero, D. Villamarín

MONSTER Collaboration

MANY Collaboration

Index

- Introduction
- Methodology
- ^{85,86}As β-decays @ IGISOL
- ${}^{27}Al(\alpha,n){}^{30}P$ reaction @ HiSPANoS
- Summary and conclusions

Introduction

- Methodology
- ^{85,86}As β-decays @ IGISOL
- ${}^{27}Al(\alpha,n){}^{30}P$ reaction @ HiSPANoS
- Summary and conclusions

The MANY Collaboration

Three Spanish detectors

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas Introduction

MANY authors

V. Alcayne⁶, A. Algora², O. Alonso-Sañudo³, J. Balibrea-Correa², J. Benito³, M. J. G. Borge^{5,4}, J. A. Briz³, F. Calviño¹, D. Cano-Ott⁶, G. Cortés¹, A. De Blas¹, C. Domingo-Pardo², A. Espinosa³, B. Fernández^{7,8}, L. M. Fraile³, G. Garcia⁴, R. García¹, V. Garcia Tavora⁴, J Gómez-Camacho^{7,8}, E. M. González-Romero⁶, C. Guerrero^{7,8}, A. Illana³, J. Lerendegui-Marco², M. Llanos³, T. Martínez⁶, V. Martínez-Nouvilas³, E. Mendoza⁶, N. Mont-Geli¹, J. R. Murias³, E. Nácher², A. Nerio Aguirre⁵, V. V. O. Onecha³, S. E. A. Orrigo², M. Pallàs¹, A. Perea⁵, A. Pérez de Rada⁶, V. Pesudo⁶, J. Plaza⁶, J. M. Quesada⁷, A. Sanchez-Caballero⁶, V. Sánchez-Tembleque³, R. Santorelli⁶, J. L. Tain², A. Tarifeño-Saldivia², O. Tengblad⁵, J. M. Udías³, D. Villamarín⁶, S. Viñals⁴

¹Institut de Tècniques Energètiques (INTE), Universitat Politècnica de Catalunya (UPC), E-08028, Barcelona, Spain
²Instituto de Física Corpuscular (IFIC), CSIC – Univ. Valencia (UV), E-46071, Valencia, Spain
³Grupo de Física Nuclear (GFN) and IPARCOS, Universidad Complutense de Madrid (UCM), E-28040, Madrid, Spain
⁴Centro de Micro-Análisis de Materiales (CMAM), Universidad Autónoma de Madrid (UAM), E-28049, Madrid, Spain
⁵Instituto de Estructura de la Materia (IEM), CSIC, E-28006 Madrid, Spain
⁶Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-28040, Madrid, Spain
⁷Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla (US), E-41012 Sevilla, Spain
⁸Centro Nacional de Aceleradores (CNA) (Universidad de Sevilla (US) - Junta de Andalucía - CSIC), E-41092, Sevilla, Spain

Motivation

Knowledge on (α, Xn) reactions is required in several fields:

- Nuclear structure. Most of our actual experimental knowledge on (α,Xn) reactions comes from nuclear structure experiments between the 1950s and the 1970s
- Neutron background in underground experiments (nuclear astrophysics, Dark Matter) due to radiogenic αdecay chains
- Nuclear astrophysics. Neutron sources in collapsing stars linked to the r-process. E_{α} below ~1 MeV (around the Gamow peak)
- Nuclear technologies, non-proliferation and homeland security. α-emitters present in fresh/irradiated nuclear fuels can create a neutron source through (α,Xn) reactions with (light) surrounding nuclei: fluorine, oxide and carbide fuels, vitrified nuclear waste...
 - Determination of the ²³⁵U enrichment
 - NDAnalysis of irradiated fuels / fuels enriched in MA / MOX fuels
 - Neutron source term in the deep geologic repository

SaG4n E. Mendoza *et al.*, Nucl. Instrum. and Methods A, **960**, (2020) 163659 <u>https://win.ciemat.es/SaG4n</u>

Measurement of (α, n) cross sections

This talk about the MONSTER detector

Ciernole Investigaciones Energéticas, Medioambientales y Tecnológicas

MONSTER

MOdular Neutron time-of-flight SpectromeTER is a detection system designed for DESPEC

It's the result of an international collaboration between CIEMAT, JYFL-ACCLAB, VECC, IFIC, and UPC

Main characteristics:

Low neutron energy threshold

Ciemat

v Tecnológica

- High intrinsic neutron detection efficiency
- Discriminates between detected neutrons and γ-rays by their pulse shape
- Good time resolution
- The energy of the neutrons is determined with the TOF technique A. R. Garcia *et al.*, JINST, **7**, (2012) C05012

T. Martinez *et al.*, Nuclear Data Sheets, **120**, (2014) 78

DAISY

Digital data Acquisition SYstem

Custom DAQ software developed at CIEMAT

D. Villamarín *et al.,* Nucl. Instrum. and Methods A, **1055**, (2023) 168526

Hardware:

- 15 x ADQ14DC Teledyne SP Devices cards (14 bits, 1 GS/s, 4 ch)
- 2 x Counter/Timer PCIe6612 National Instruments
- NI Octoclock CDA-2990 (10 MHz, 8 ch)
- Wiener NIM/TTL Programmable modules
- 2 x PCs + 2 x PCle crates
- 3 x 96 TB RAID 6

Integrates custom pulse shape analysis software developed at CIEMAT to analyze signals online:

- Resolving pileups
- Without adding dead time

Pulse shape analysis

Introduction

β-delayed neutron emission

Energy

 β -delayed neutron emission occurs in the neutron-rich side of the chart of nuclides

β-delayed neutrons are interesting for:

- Nuclear structure
- Nuclear astrophysics
- Fission reactor kinetics and control

I. Dillmann et al., INDC(NDS)-0643, (2014)

- Introduction
- Methodology
- ^{85,86}As β-decays @ IGISOL
- ${}^{27}Al(\alpha,n){}^{30}P$ reaction @ HiSPANoS
- Summary and conclusions

Inverse problem

The response matrix transforms the original neutron energy distribution into the measured TOF spectrum

What is needed:

- Method for solving the inverse problem -> Iterative Bayesian method
- Construction of the response matrix *R* covering the whole neutron energy range and providing the TOF response for each considered neutron energy -> Accurate Monte Carlo simulations with Geant4

Validation with the analysis of a virtual experiment's TOF data with a known solution (neutron energy distribution):

- *R* is discretized in TOF and E_n . The best binning in TOF and E_n has to be determined
- Study of systematical effects on the obtained solution. Different *R*s for different thresholds, background, and β-detection efficiency

Bayes theorem

The ingredients of the Bayes theorem:

- *C_i*: independent causes -> neutron energy distribution
- *E_j*: effects -> TOF spectrum
- $P(E_j|C_i)$: response matrix

$$P(C_i|E_j) = \frac{P(E_j|C_i)P_0(C_i)}{\sum_{l=1}^{n_c} P(E_j|C_l)P_0(C_l)}$$

The unfolding is done applying an iterative Bayesian method to obtain the neutron energy spectrum: G. D'Agostini., Nucl. Instrum. and Methods A, **362**, (1995) 487

- Start from a uniform distribution: $P_0(C_i) = 1/n_C$
- Obtain the new $\widehat{P}(C)$ distribution
- Replace $\widehat{P_0}(C)$ by $\widehat{P}(C)$ and repeat until a stable solution is reached

Monte Carlo simulation of the TOF response function

Very detailed simulated setup, including all relevant geometries and light yield curves

TOF response to 2 MeV neutrons for different setups, including effects due to time and spatial resolutions

Only the array at 2 m is considered in this analysis

Methodology

⁸⁵As β-delayed neutron energy spectrum extracted from ENDF/B-VIII.0

Simulated TOF response considering only the neutron-emission part of the β-decay

Binning of the response matrix

Cause bins of constant width in energy of 15 keV

Cause Efficiency 300 250 200 10^{-4} 150 100 ${}^{50}E_{} = B_n = 34 \text{ keV}$ 10⁻⁵ 0 200 600 800 1000 400 TOF (ns)

Cause bins of variable width in energy corresponding to a constant width in time of 2.8 ns

Cause bins of variable width in energy according to the system's energy resolution

Binning of the response matrix (cont.)

Binning of the response matrix (cont.)

The binning according to the system's energy resolution offers better overall reproduction of the original neutron energy distribution over the whole energy range

Effect of the threshold

Applying a neutron detection threshold limits the lower neutron energy that can be detected and introduces a bias on the obtained energy distribution due to the normalization to the unity

Effect of the background

The background can be taken into account in a simple way barely affecting the result, although it can limit the detection of high-energy neutrons emitted with low intensity

Analysis of a realistic β -decay experiment

The realistic experiment combines all previously studied effects and includes the effect of the β-detector threshold

A very accurate reproduction of the neutron energy distribution is achieved over a large energy range

Index

- Introduction
- Methodology
- ^{85,86}As β-decays @ IGISOL
- ${}^{27}Al(\alpha,n){}^{30}P$ reaction @ HiSPANoS
- Summary and conclusions

Cleaning neutron TOF spectra

Different neutron cuts were studied to obtain a "clean" TOF spectrum

The importance of having PSD: the PSD vs light cut allows for more than one order of magnitude of uncorrelated γ-rays background suppression

Ciemat Centro de Investigaciones

y Tecnológicas

^{85,86}As β-decays @ IGISOL

^{85,86}As β-delayed neutron energy distributions

Excellent agreement with previous data and evaluations

^{85,86}As β-decays @ IGISOL

Index

- Introduction
- Methodology
- ^{85,86}As β-decays @ IGISOL
- ${}^{27}Al(\alpha,n){}^{30}P$ reaction @ HiSPANoS
- Summary and conclusions

Experimental setup

MONSTER module placed at 1 m and 2 m

Thick (300 μm) ^{27}Al (99 % purity) target

 E_{α} = 5.5, 7, and 8.25 MeV (Buncher not optimized for α -particles)

Data collected with DAISY:

- Channel 0: MONSTER
- Channel 1: empty
- Channel 2: accelerator RF
- Channel 3: current integrator

Custom pulse shape analysis software developed at CIEMAT to analyze signals online:

- Resolving pileups
- Without adding dead time

TOF spectra @ 1 m

Neutron TOF spectra @ 1 m

Neutron energy distributions

 $^{27}Al(\alpha,n)^{30}P$ reaction @ HiSPANoS

Comparison with existing data

Uncertainties

Jacobs and Liskien:

- Target stability, charge measurement: 2.0 %
- Neutron detection efficiency: 3.2 5.2 %
- Integration procedure: 2.6 %
- Statistics: 2.0 %
- Neutron energy determination:
 - 0.5 % @ 200 keV
 - 1.7 % @ 7 MeV

This work:

- Statistical
- Systematic (only):
 - Efficiency
 - Flight path
 - TOF resolution

1750

1.01

Index

- Introduction
- Methodology
- ^{85,86}As β-decays @ IGISOL
- ${}^{27}Al(\alpha,n){}^{30}P$ reaction @ HiSPANoS
- Summary and conclusions

Summary and conclusions

The main takeaways from this presentation are:

- Commissioning of MONSTER and its DAQ system DAISY:
 - Successful commissioning of MONSTER
 - Good neutron/γ-ray discrimination capabilities
 - Excellent energy resolution
- New data analysis methodology for neutron TOF spectroscopy:
 - Unfolding of the TOF spectrum with the iterative Bayesian unfolding method based on accurate Monte Carlo simulations
 - Validation of the unfolding methodology with a simulated experiment
- Experimental validation:
 - Procurement of the ⁸⁵As β-delayed neutron spectrum and the "first" ⁸⁶As β-delayed neutron spectrum
 - First successful test at CNA for (α, n) reaction measurements with MONSTER
- New experiments are being planned at CNA and CMAM

Thank you!

