Updates to the NeuCBOT tool for (α, n) calculations

Shawn Westerdale

w/ Maxim Gromov & Ivan Goncharenko
IAEA Technical Meeting on (α,n) nuclear data
evaluations and data needs
30 November, 2023

UCR PHYSICS & ASTRONOMY

Bing AI, draw a picture of the (α,n) reaction

NeuCBOT

- Neutron Calculator Based On TALYS Now with other library options!
 - **GitHub:** https://github.com/shawest/neucbot
 - Papers:
 - S. Westerdale and P. D. Meyers. "Radiogenic Neutron Yield Calculations for Low-Background Experiments." NIM A 875, 11 (2017): pp 57–64
 - <u>M.B. Gromov, S. Westerdale, I.A. Goncharenko, A.S. Chepurnov.</u> "Calculation of Neutron and Gamma Yields of (α, n) and (α, nγ) Reactions by Means of a New Version of the NeuCBOT Program for low background Experiments. *Phys. At. Nucl.* 86, 2 (2023): pp 181–187
 Growing collaboration!
- **Goal:** Create a tool that low-background experiments can use for estimating (α,n) neutron backgrounds, including neutron yields and spectra

Design principles

- Easy to use: usable by non-experts out-of-the-box
- Easy to use. Usable by horr experts out of the box
 python3 compatibility
 Easy to modify (written in Python!): adaptable to different needs (finally!)
- Flexible: usable by experiments w/ different materials, contaminants, & secular equilibrium breaks

Usage

./neucbot.py -h

Usage: You must specify an alpha list or decay chain file and a target material file.

You may also specify a step size to for integrating the alphas as they slow down in MeV; the default value is 0.01 MeV

- -l [alpha list file name]
- -c [decay chain file name]
- -m [material composition file name]
- -s [alpha step size in MeV]
- -t (to run TALYS for reactions not in libraries)
- -d (download isotopic data for isotopes missing from database)
- -d [v1,v2] (specify v1.0 (TALYS 1.6) or v2.0 (TALYS 1.95) database)
- -o [output file name]

./neucbot -c Chains/Rn222Chain.dat -m Materials/Acrylic.dat -o output.dat

Now added: v3 adds JENDL/AN-2005 libraries—not yet merged with main branch

User inputs

Material composition

<u>a source description</u>

a energy list

Isotope list (e.g. decay chains)

List of...

Chemical symbols Mass number (O = nat. abund.) Percent mass

```
# Example Ar+Xe Mixture
Ar 36 0.16 j
Ar 38 0.032 t
Ar 40 49.802
Xe 0 50 j
```

v3: Specify [J]ENDL or [T]ALYS library for each isotope, default is t

S. Westerdale (UCR)

List of... α energies in MeV Percent relative intensity List of...

Isotope (e.g. **Th232**)

Percent relative abundance

#	Example Alpha Source	
5	100	
6	50	
De ar	ecay info scraped from NuDa Id compiled into a local librar	at Y

# Th23	32 Decay	Chain	Alpha-Emitters
Th232	100		
Th228	100		
Ra224	100		
Rn220	100		
Po216	100		
Bi212	35.94		
P0212	64.06		

4

Example output

The calculation

The calculation

Example α list 6 30 5 100 4 20 3 90

Two possible executions \rightarrow

$$0.30 \int_{0}^{6} f(x)dx + 1.0 \int_{0}^{5} f(x)dx + 0.20 \int_{0}^{4} f(x)dx + 0.90 \int_{0}^{3} f(x)dx$$

$$OR$$

$$0.30\int_{5}^{6} f(x)dx + 1.3\int_{4}^{5} f(x)dx + 1.5\int_{3}^{4} f(x)dx + 2.4\int_{0}^{3} f(x)dx$$

NeuCBOT does this, because it is faster

 Tradeoff: Loses information about the energy lost by α prior to capture; relevant when (α,n) source is the detector's target medium, itself
 Future updates will give option for slow calculation

Neutron spectrum calculation

- Currently completely outsources to TALYS
 - TALYS database includes neutron spectra for each α energy
 - Re-scale each spectrum to the corresponding partial yield and summed over all α energies
- For JENDL calculations, the TALYS spectrum is re-scaled as $\sigma_{\text{JENDL}}/\sigma_{\text{TALYS}}$
 - A spectrum calculation using JENDL energy-angle distributions is currently being developed
 - Currently in the debugging phase

JENDL neutron spectrum—coming soon

Databases: downloaded by default

- NeuCBOT comes with some data automatically, and generates a local database with additional data as needed
 - v3: all JENDL files downloaded at once: ^{6,7}Li,⁹Be,^{10,11}B,^{12,13}C,^{14,15}N,^{17,18}O,¹⁹F,²³Na,²⁷Al, ^{28,29,30}Si,
- Elemental isotopic abundance in ./Data/abundances.dat :
 - From P. De Bievre and P.D.P. Taylor, "Table of the isotopic compositions of the elements," Int. J. Mass Spectrom. Ion Phys. 123, 149 (1993).
 - Used for determining default abundances when "0" is specified for the mass number in the material file relevant for slowing and capturing α 's
- Elemental stopping powers ./Data/StoppingPowers/[Chemical Symbol].dat :
 - Contains SRIM stopping power tables for α 's in pure element from 10 keV to 10 MeV

Databases: populated as needed

• Isotope decay data ./Data/Decays/ensdf[Isotope].dat :

- Populated when NeuCBOT is run with an isotope list by retrieving ENSDF files from NNDC's website
- Contains α -decay data about the isotope (energy and branching ratio) can also be used to retrieve data about correlated γ emission, but not yet integrated into official release
- Cross section and neutron spectrum calculations ./Data/Isotopes/[Ele]/[Isotope]/...
 - **NSpectra/** : Neutron energy spectrum, generated by TALYS
 - **TalysInputs/** : auto-generated input files for running TALYS, currently using default model parameters
 - **TalysOut/** : detailed TALYS output file describing α reactions, outgoing γ 's, and excited daughters
 - Database generation options:
 - Auto-generated with local TALYS installation (- t option)
 - Pulled from a pre-generated database (-d option): Available for all natural isotopes for α energies up to 10 MeV
 - NeuCBOT-v1.0 uses database generated with TALYS-1.6 (Can checkout branch to access)
 - NeuCBOT v2.0 uses database generated with TALYS 1.95 (now default, on master branch)

Correlated γ -ray emissions in $\sqrt{3}$

v3 introduces a separate executable, neucbot_with_gamma.py

TALYS library generated with modified macro, adding outgamdis y filespectrum n g

As TALYS runs, it tracks the $\gamma\text{-}\text{ray}$ spectrum the same way the neutron spectrum is calculated

Correlated γ -ray emissions in $\sqrt{3}$

- Present calculation only accounts for γ-rays emitted by the compound nucleus
- Ongoing development to add prompt γ -rays from
 - De-excitation of daughter nucleus
 - The α -emitter, along with the α itself

Calculations for example materials

M.B. Gromov, S. Westerdale, I.A. Goncharenko, A.S. Chepurnov. "Calculation of Neutron and Gamma Yields of (α, n) and (α, nγ) Reactions by Means of a New Version of the NeuCBOT Program for low background Experiments. *Phys. At. Nucl.* 86, 2 (2023): pp 181–187

Material	Neutron yield, 10^{-8} neutrons per decay of parent nucleus					
	²³² Th	²³⁵ U	²³⁸ U upper	²³⁸ U middle	²³⁸ U lower	
Cu	27	1.3	0	2.7	0	
Cu20Ti80	510	180	0.15	200	0.7	
Ti	620	220	0.18	240	0.9	
VT1-00	625	230	0.4	240	1.1	
VT1-0	630	230	0.6	250	1.45	
Stainless steel 08X18H10T	190	39	0.13	51	0.18	
Material	Gamma yields, 10^{-10} gammas per decay of parent nucleus As expected, yield from $(\alpha, n\gamma) << (\alpha, n)$, only accounting for compound nucleus emissions					
Matchar	per decay of pa	rent nucleus	for compound	nucleus emissions	n), only accounting	
Matchar	Gamma yields, per decay of pa ²³² Th	10 ² gamma rent nucleus ²³⁵ U	²³⁸ U upper	²³⁸ U middle	²³⁸ U lower	
Cu	Gamma yields, per decay of pa ²³² Th 62	²³⁵ U 29.5	As expected, yr for compound ²³⁸ U upper 0.02	²³⁸ U middle 23	²³⁸ U lower 0.16	
Cu Cu20Ti80	2 ³² Th 62 72	²³⁵ U 29.5 29	As expected, yr for compound ²³⁸ U upper 0.02 0.06	²³⁸ U middle 23 29	²³⁸ U lower 0.16 0.18	
Cu Cu20Ti80 Ti	Gamma yields, per decay of pa ²³² Th 62 72 74	235 U 29.5 29	As expected, yr for compound ²³⁸ U upper 0.02 0.06 0.07	²³⁸ U middle 23 29 30	²³⁸ U lower 0.16 0.18 0.19	
Cu Cu20Ti80 Ti VT1-00	Gamma yields, per decay of pa ²³² Th 62 72 74 74	235 U 29.5 29 29 29 29	As expected, yr for compound ²³⁸ U upper 0.02 0.06 0.07 0.11	²³⁸ U middle 23 29 30 30	²³⁸ U lower 0.16 0.18 0.19 0.23	
Cu Cu20Ti80 Ti VT1-00 VT1-0	Gamma yields, per decay of pa ²³² Th 62 72 74 74 74	235 U 29.5 29 29 29 30	As expected, yr for compound ²³⁸ U upper 0.02 0.06 0.07 0.11 0.16	²³⁸ U middle 23 29 30 30 30	 ²³⁸U lower 0.16 0.18 0.19 0.23 0.27 	

NeuCBOT approaches evaluations more closely for v2 and v3-JENDL

Compared to evaluations in A. C. Fernandes, et al., "Comparison of thick-target (alpha,n) yield calculation codes". EPJ Web Conf. 153, 07021 (2017).

S. Westerdale (UCR)

NeuCBOT approaches SaG4n and SOURCES4-2023 more closely in v2 and v3-JENDL

Compared to evaluations in A. C. Fernandes, et al., "Comparison of thick-target (alpha,n) yield calculation codes". EPJ Web Conf. 153, 07021 (2017).

S. Westerdale (UCR)

Materials

- **Material compositions:** for some proprietary materials, the exact composition is left vague by the supplier; for others, industry tolerances may allow for significant variation
 - For 304L stainless steel, companies report compositions varying by ~5% for most elements, and C, Mg, P, S, Si, N are reported as upper limits
 - A few percent uncertainty in composition is small, but whether or not an isotope appears at all can make a bigger difference
- Natural abundances: some variance/uncertainty in isotopic abundances between references; most consistent within errors

Contaminants (Mostly ²³²Th, ²³⁸U, and ²³⁵U)

- Assay uncertainties: Vary with technique and activity level, but often ballpark 10–100%
- Secular equilibrium: Typically measure heads of decay chains or γ-emitters, so it is not always clear where to break secular equilibrium, especially in ²³⁸U. This could be a 10–20% effect

Stopping powers

- **SRIM:** For α 's, 70% of data within 5% of calculations; 87% of data within 10%
 - Model-based calculations with data-driven corrections
 - Ziegler, James F., M. D. Ziegler, and J. P. Biersack. "SRIM The Stopping and Range of Ions in Matter (2010)." Nucl. Instrum. Methods Phys. Res. B 268, 11–12 (2010): 1818–23
 - Alternative approach to consider: ICRU 49
- Bragg's rule: summing mass stopping powers weighted by mass fractions
 - Usually agrees with data to within 20%
 - Thrown off by chemical bonds significant for simple molecular targets and light elements
 - SRIM can account for this with "Köln Core and Bond" approach; not currently in NeuCBOT
- Future update: Different stopping power choices, with error estimates

S. Westerdale (UCR)

(a,n) cross sections

- Cross sections from TALYS based on theoretical nuclear models.
 - Generally pretty good, but there are some isotopes where its predictions disagree significantly with measurements
 - What uncertainties should we assign to cross sections calculated by TALYS?
- Measurement compilations and evaluations in JENDL and ENDF/B-VIII
 - Measurements not always available for isotopes at needed energies
 - Uncertainties on measurements (when provided) are often in 10-20% range
 - Different measurements of the same isotopes sometimes differ by up to 40%
 - Uncertainty evaluations inconsistent between measurements, often missing
- **Future update:** Data-driven corrections to TALYS cross sections, where available, with uncertainty estimate

Neutron energy spectra

- In theory, this is easy to calculate...
 - if you know the structure of all relevant nuclei and calculate anisotropies in the center-of-mass frame
- NeuCBOT lets TALYS and its models handle all of this
- In general, uncertainties and lack of knowledge regarding nuclear structure can significantly impact the neutron spectrum calculations

Inhomogeneities

Grains: Materials with grain sizes comparable to or larger than α track lengths

Films: Layers of materials thin compared to the α track length

S. Westerdale (UCR)

Planned new features

- JENDL neutron spectrum calculations, corrected for aforementioned bugs
- GUI web interface already under development by high school student Dhruv Trivedi
- **Data-driven corrections** to (α, n) cross sections and stopping powers, with uncertainties
 - Including options to choose between SRIM and ICRU 49 calculations, and to include Core and Bond corrections
- Alternative cross section libraries, where available
 - ENDF/B-VIII, EMPIRE, User-added
- Correlated γ-rays calculations as a function of neutron energy
- Total α energy loss calculations prior to capture
- Non-homogeneous contamination distribution yield calculations

Useful inputs

- TALYS OMP parameters best-suited for low- & mid-Z targets, $E_a \sim 4-10$ MeV
 - Data/model comparisons to optimize parameters
- More data and evaluations in this energy range
 - Partial yields of excited final states (and how they de-excite) will also be very valuable
- **Uncertainty estimates** on cross section measurements/evaluations, treated in a globally consistent way
 - Moving forward, it is important for the low-background community that we have a consistent and accurate estimate of the uncertainty in (α,n) yield calculations, both for
 - estimating radio-contamination tolerances when designing experiments
 - analysis techniques that profile/marginalize over background model uncertainties

END

S. Westerdale (UCR)