

Experimental Study of Thick Target Yield from the $^{13}C(\alpha,n_0)^{16}O$ Reaction

P.S. Prusachenko*, T.L. Bobrovskiy, M.V. Bokhovko, A.F. Gurbich

Institute for Physics and Power Engineering, Experimental Nuclear Physics Department, Bondarenko sq. 1, Obninsk 249033, Russia

*email: prusachenko.pavel@gmail.com

Outline

- Motivation
- Experiment
- Data analysis
- Target composition determination
- Corrections:
 - -Detectors efficiency
 - -Multiple neutron scattering
- Results:
 - Neutron spectra
 - Stopping powers
 - Total thick-target yields
- Future plans
- Conclusions

Nuclear Science and Engineering

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/unse20

Experimental Study of Thick Target Yield from the 13 C(α ,n₀) 16 O Reaction

P. S. Prusachenko, T. L. Bobrovskiy, M. V. Bokhovko & A. F. Gurbich

To cite this article: P. S. Prusachenko, T. L. Bobrovskiy, M. V. Bokhovko & A. F. Gurbich (2023): Experimental Study of Thick Target Yield from the 13 C(α ,n₀) 16 O Reaction, Nuclear Science and Engineering, DOI: 10.1080/00295639.2023.2236477

To link to this article: https://doi.org/10.1080/00295639.2023.2236477

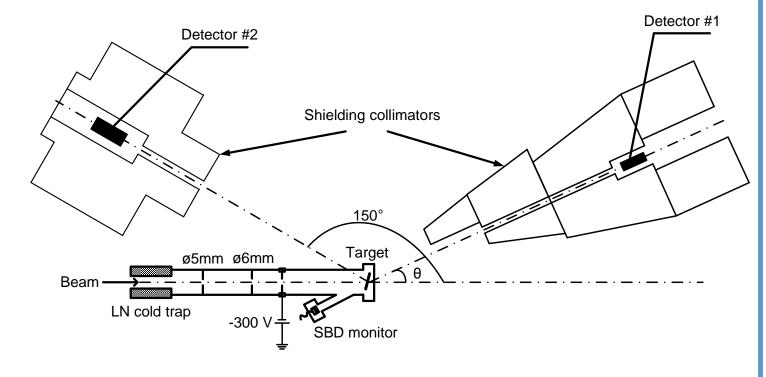
View supplementary material 🗹

Published online: 09 Aug 2023.

Motivation

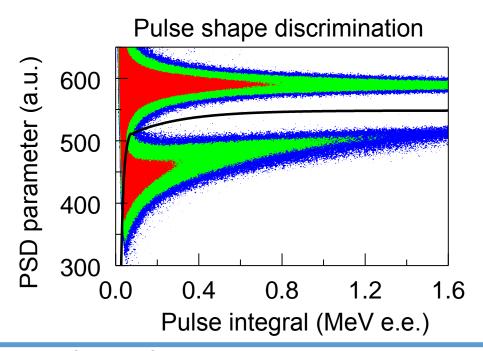
Needs:

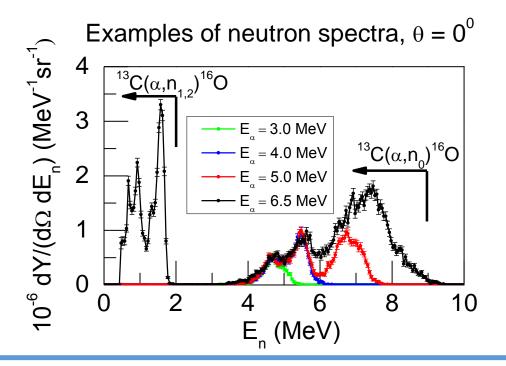
- The data on the total thick target yield (TTY) from the 13 C(α ,n) 16 O reaction are required to verify the evaluated cross-section of the 13 C(α ,n $_0$) 16 O and 16 O(n, α $_0$) 13 C reactions
- The data on TTY from the 13 C(α ,n) 16 O reaction are used to normalize the experimental data on the cross-section of the 13 C(α ,n $_0$) 16 O reaction


Current problems:

- The existing experimental data were measured with a large uncertainty
- $\sim 10\%$ uncertainty of the ^{13}C contain in the natural carbon, 10-20% the uncertainty of the 4π detectors efficiency
- The previously measured TTY data do not support the new ENDF-B/VIII.0 and JENDL-5.0 evaluations.

The aim of the work:


- To obtain new experimental data on TTY from the 13 C(α ,n₀) 16 O reaction
- To decrease the data uncertainties


Experimental method

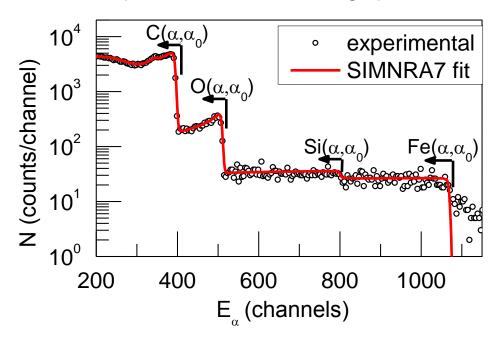
- Time-of-flight method
- Acquisition system based on a waveform digitizer
- Energy range 3.0 6.5 MeV
- Angle range 0 150°
- Detectors p-terphenyl and stilbene
- Pulsed beam of He++
- Thick carbon target, 94% ¹³C enrichment
- Surface barrier detector as beam monitor

Data analysis (I)

Digital signal processing:

- Pulse shape discrimination (PSD) a cross-correlation based algorithm
- Timestamps a constant fraction algorithm
- Pulse integral numerical integration over 200 ns from the pulse start

1D neutron energy spectra were constructed after sorting the events on the PSD


Data analysis (II)

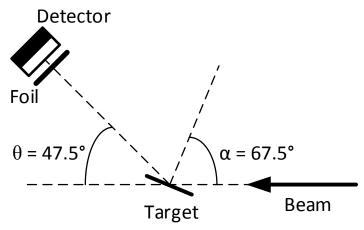
$$\frac{dY^{2}(E_{n},\theta)}{d\Omega dE_{n}} = \frac{N(E_{n},E_{n}+\Delta E_{n},\theta)}{\varepsilon(E_{n})\eta\gamma(E_{n},\theta)\rho\xi\Omega \Delta E_{n}}$$

- $N(E_n, E_n + \Delta E_n, \theta)$ number of events corresponding to the neutron energy of E_n and the angle of θ
- $\varepsilon(E_n)$ intrinsic efficiency of neutron detectors
- η number of α -particles hitting the target
- $\gamma(E_n, \vartheta)$ multiple neutron scattering correction factor
- ρ content of ¹³C in the target
- ξ stopping power difference correction (the difference between SP of target used and the target from pure 13 C)
- Ω solid angle of the detector
- ΔE_n the spectrum bin width

Target composition. High Z impurities.

α -particles backscattering spectrum

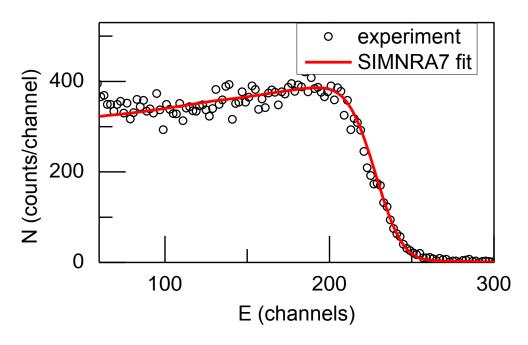
Spectrum of backscattered α -particles acquired at E_{α} = 6.5 MeV and θ = 165° from the target used and SIMNRA7 fit


- Contribution of high-Z impurities was determined by the analysis of backscattered α -particles spectra acquired during routine measurements
- Surface barrier silicon detector (SBD monitor)
- $E_{\alpha} = 6.5 \text{ MeV}, \theta = 165^{\circ}$
- Spectrum fitted by SIMNRA7¹ software
- Cross-section data:
- $^{13}\text{C}(\alpha,\alpha_0)$ experimental dataset measured by Heil²;
- 12 C(α,α_0), O(α,α_0), Si(α,α_0) evaluations from SigmaCalc³ software;
- Fe(α , α ₀) Rutherford;

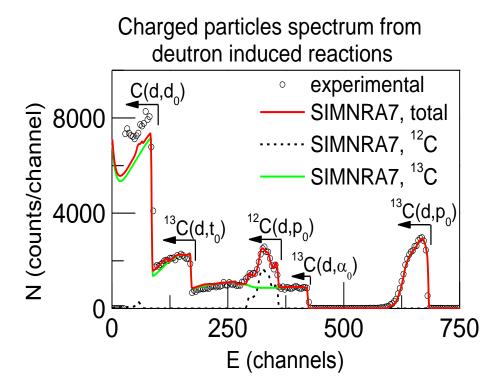
^{1.} M. Mayer, Nuclear Instruments and Methods B, 332 (2014) 176.

^{2.} M. Heil et al, Physical Review C, 78 (2008) 025803.

^{3.} A. F. Gurbich, Nuclear Instruments and Methods B, 371 (2016) 27.


Target composition. Hydrogen content.

Layout of experiment on the determination of hydrogen atoms content

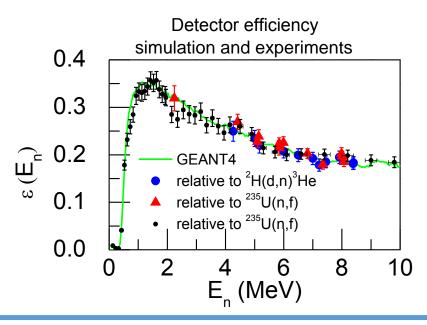

- The content of hydrogen was analyzed by elastic recoil detection analysis (ERDA) using the 1 H(α ,p) 4 He reaction
- Detector PIPS covered by a thin Al foil (1.3x10 20 at.·cm $^{-2}$) to filter the scattered α -particles.
- $E_{\alpha} = 4.5 \text{ MeV}, \theta = 47.5^{\circ}$
- Target tilt 67.5°
- Spectrum fitted by SIMNRA7 software using SigmaCalc cross-section

Recoil proton spectrum from ${}^{1}H(\alpha,p)^{4}He$

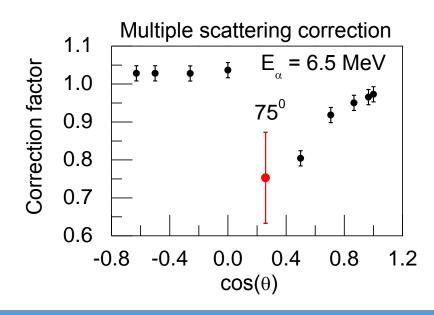
Spectrum of recoil protons acquired at E_{α} = 4.5 MeV and θ = 45° and SIMNRA7 fit

Target composition. ¹³C/¹²C atoms ratio.

Spectrum of charged particles from reaction induced in the target used by deuterons acquired at E_d = 1.5 MeV and θ = 150° and SIMNRA7 fit

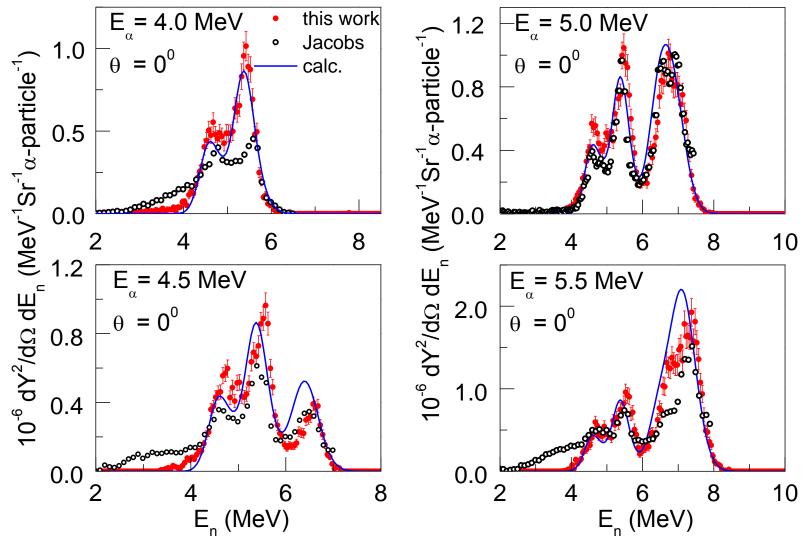

- 13C/12C ratio was determined by NRA (nuclear reaction analysis)
- Reactions used 12,13 C(d,p₀) 13,14 C, 13 C(d, α_0) 11 B and 13 C(d,t₀) 11 B
- Charged particle detector PIPS
- $E_d = 1.5 \text{ MeV}, \theta = 150^{\circ}$
- Spectrum fitted by SIMNRA7¹ software
- Cross-section data:
- 13 C(d,p₀)¹⁴C, 13 C(d,α₀)¹¹B, 13 C(d,t₀)¹¹B experimental dataset measured by J. Colaux²;
- $^{12}C(d,p_0)^{13}C$ evaluation from SigmaCalc;

- 1. M. Mayer, Nuclear Instruments and Methods B, 332 (2014) 176.
- 2. J. L. Colaux, T. Thome, and G. Terwagne, Nuclear Instruments and Methods B, 254 (2007) 25.


Target composition

Element/Isotope	Concentration (%)	Uncertainty (%)
¹³ C	93.7	0.7
¹² C	3.4	0.5
О	0.8	0.1
н	1.6	0.4
Si	0.3	0.2
Fe	0.2	0.1

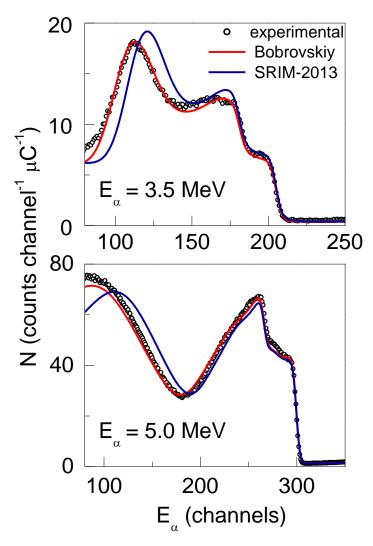
Corrections



- The detectors efficiency was calculated using GEANT4 framework taking into account the NRESP7 model.
- The simulation results for the first detector were verified by three independent experiments
- The influence of the multiple scattering was negligible
- The efficiency of the second detector was verified relative to the first one.
- The efficiency uncertainties 1.5% for the first detector,
 4.0% for the second one

- Correction factor taking into account the multiple neutron scattering was determined by GEANT4 simulation
- The full geometry of the experiment was taken into account
- The attenuation of the neutron flux in the target made the main contribution to the correction
- The correction obtained for θ =75° had too large uncertainty, spectra at this angle were discarded in further analysis

Results. Neutron spectra

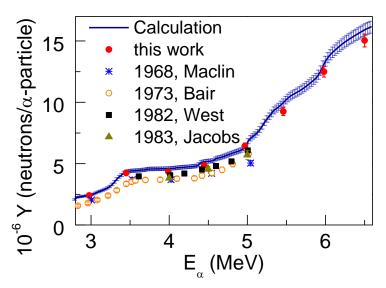


Measured and calculated neutron spectra from thick target from the 13 C(α , n_0) 16 O reaction

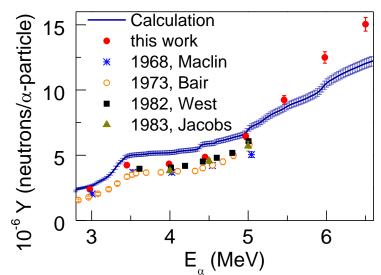
- The measured spectra were compared with the calculated ones and the data from paper of Jacobs and Liskien¹
- Calculated spectra were obtained for θ=0⁰ using the cross-section presented in Barnes², Kerr³, Prusachenko⁴ papers
- There are significant discrepancies between data measured in this work and data presented by Jacobs

- 1. G.J.H. Jacobs and H. Liskien, Annals of Nuclear Energy 10 (1983) 541.
- 2. B. K. Barnes et al, Physical Review, 140 (1965) B616
- 3. G. W. Kerr, Nuclear Physics A, 110 (1968) 637
- 4. P. S. Prusachenko et al, Physical Review C, 105 (2022) 024612.

Stopping power


- The stopping power of α -particles in carbon obtained by Bobrovskiy et al.¹ were used to calculate the TTY values based on the theoretical evaluations
- The stopping power obtained by Bobrovskiy et al. 1 reproduces the α -particle backscattered spectra acquired by the SBD monitor much better than other SP datasets such as SRIM-2013
- The influence of the allotropic effect was negligible²

- 1. T. L. Bobrovskiy et al., Nuclear Instruments and Methods in Physical Research B, 543, 165094 (2023).
- 2. Mitsuo Tosaki, Eero Rauhala, Nuclear Instruments and Methods in Physical Research B, 360, 16 (2015)


The spectra of a-particles backscattered from the ¹³C target and SIMNRA7 fit with two different stopping powers models

Total thick target yields

Measured TTY vs ENDF-VIII.0 based calculation

Measured TTY vs JENDL-5.0 based calculation

- Measured TTY values were compared with calculations based on the ENDF-B/VIII.0 and JENDL-5.0 evaluations
- The average difference between the experimental results and ENDF/B-VIII.0 based calculation is ~3.8%
- The experimental data and the JENDL-5.0 based calculation differ significantly (17-19%)
- Total measurement uncertainty is ~3.5%, including:
 - efficiency (~2.0%),
 - current integration (~2.0%),
 - angle distribution integration (~1.5%)
 - etc.
- Calculation uncertainty is ~3.0%

Future plans in (α, n) nuclear data activity

- To finish analysis of the experimental data on the differential cross-sections of the $^{13}\text{C}(\alpha,\alpha_0)^{13}\text{C}$ reaction
- To obtain new data on the stopping power for alpha-particles in some actinide compounds (see T. Bobrovskiy's presentation)
- To measure and verify the differential and partial cross-sections of the α -induced reactions on the ^{19}F (α, n) , (α, α_0) , (α, α') , (α, p)

Summary

- The double differential yields of neutrons from the 13 C(α ,n $_0$) 16 O reaction were measured over the energy range of 3.0 6.5 MeV and over the angle range of 0-150°
- The total systematic uncertainty was 3.5%
- The total thick target yields were determined by integrating the double differential thick target yields both over the neutron energy and the solid angle
- The precision analysis of the elemental and isotope composition of the target was made using the α -particles backscattering spectrometry and the nuclear reaction analysis. The accuracy of the 13 C content determination is 0.7%
- The measured total thick target yields from 13 C(α ,n₀) 16 O reaction support the ENDF-B/VIII.0 evaluation within the uncertainties of the experiment (3.5%) and the yield calculation (3.0%)

Thank for your attention!

Prusachenko Pavel, Ph.D., Head of Laboratory prusachenko.pavel@gmail.com