

Progress on ¹⁹F(alpha,n)

Vivian Dimitriou¹, Eleni Vagena²

¹Nuclear Data Section, IAEA, Vienna, Austria ²NCSR Demokritos, Athens, Greece

¹⁹F(α ,n): data needs

- Nonproliferation, spent fuel management, homeland security
 - Non-destructive assay of clean or spent nuclear fuel (UF_6 , PuF_4 , etc)
 - Alphas from alpha-emitters (Am, Bk, Cf, Cm, Np, Pu, Th, U) with alphadecay energies < 6.5 MeV
- Rare-event experiments
 - Low-background measurements
 - Alphas from radioactive natural background (U and Th decay chains, Rn emanation)
 - Alpha energies < 9 MeV
- Fusion technologies

Incident Energy (MeV)

Data libraries

Cross Section (barns)

Fit to exp. Cross sections

Simakov et al., NDS 137 (2017) 190

IAEA evaluation of cross-section data:

- Up to 3 MeV adopt Wrean data
- From 3 to 5 MeV adopt Balakrishnan et al data

- Perform an evaluation up to 9 MeV incident alpha energies – for applications
- Produce ENDF files

R-matrix analysis

• AZURE2

- Alpha incident energy up to 5 MeV
- Channels: $alpha+^{19}F$; $n+^{22}Na g.s.$; $p+^{22}Ne g.s.$
- Channel radius:1.4*($A_1^{1/3}+A_2^{1/3}$)
- L=4
- Background poles

Parameter	Channel radii (fm)
α _c (¹⁹ F+α)	5.96
α _c (²²Na+n)	5.32
	Atomic mass (µu)
M _n	1.00866
M _α	4.00260
M _{19F}	18.9984
M _{22Na}	21.9944
Q	-1952 MeV

¹⁹F + α (E_{lab} = 5000 keV)

Reaction Products	Q-Value (ke)	V)	Threshold (keV)		
²³ Na + γ	10467.3243	20	0		
²² Ne + p	1673.216	18	0		
¹⁹ F + α	0		0		
²² Na + NN	-1952.46	13	2349.66	16	
¹⁵ N + 2α	-4013.7991	10	4830.3664	13	

ENSDF 2022: ²³ Na						(α, p_0) measurements Schier et al, 1976					
E _α (MeV)	E _x (MeV)	Jpi	$\Gamma_{\alpha}(eV)$				Eα	Ex	Jpi		
2.363	12.419	(7/2+,5/2+)	116(20)				1.318	11.556	1/2+	٦	
2.446	12.488	(13/2+)	5000(2000)				1.492	11.700	1/2 +-		
2.612	12.625		25000				1 507	11 712	3/2-		
2.630	12.64		10000(5000))			1.870	12 010	1/2+ 5/2+		
2.738	12.729		130000(2000))			1.079	12.019	1/2+,3/2+		
2.824	12.8		6000(3000)				1.954	12.081	1/2+-		
2.846	12.818		5000(2000)				2.002	12.121	1/2-	Kup	
2.882	12.848		11000(5000))			2.081	12.186	5/2+	1 96	
2.887	12.852		9000(4000)				2.102	12.203	5/2+		
2.978	12.927		6000(3000)				2.199	12.284	1./2+,1/2-		
3.156	13.074		12000(4000))			2.319	12.383	3/2-		
3.289	13.184		9000(4000)				2.402	12.451	7/2-		
3.304	13.196		9000(4000)				2 45	12.491	3/2+		
3.366	13.248		10000(5000))			2.40	12.451	2/2+ 2/2		
3.404	13.279		14000(7000))			2.000	12.504	5/2+,5/2-		
3.474	13.337		8000(4000)				2.639	12.647	3/2-		
3.549	13.399		13000(6000))			2.742	12.732	5/2+,7/2-		
3.623	13.46		23000(11000))			3.036	12.975	1/2+,7/2-		
3.682	13.509		10000(5000))			3.165	13.082	1/2+,7/2-		
$^{19}F(\alpha, \alpha_0)^{19}F$ resonance parameters Coop et al. 1984				3.266	13.165	5/2+,7/2-					
8)	r: b)			- (FC)		,	3.308	13.200	7/2-,9/2+		
eV)	(MeV)	l _a	J~	$I_{\alpha}/I^{-})$	(keV)	$\gamma_{\bar{x}}$ (keV)	3.361	13.243	5/2+,5/2-		
13	12.544	2	<u>3</u> +. <u>5</u> +	0.23. 0.16	6.6	76. 52	3.548	13.398	3/2-,7/2-		
32	12.642	{ 0	$\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ - 3 -	0.17	11	15	3.735	13.552	1/2-,5/2+		
37	12.729	2	$\frac{1}{2}$, $\frac{1}{2}$ $\frac{3}{2}$ +, $\frac{5}{2}$ +	0.21, 0.11	13	34, 18 44, 31	3.87	13 664	5/2+.7/2-		
13	12.791	2	$\frac{3}{2}^+, \frac{5}{2}^+$ 0	0.065, 0.045	11	12, 9	4 115	12 966	1/2_7/2_		
73	12.841	2	$\frac{2}{2}, \frac{2}{2}, \frac{3}{2}$	0.37, 0.20	3.4 17	8.4, 4.5 27, 19	4.115	13.800	1/2-,1/2-		
37	12.852	{ 0	$\frac{1}{2}^{+}$	0.11	5.5	2.3	4.180	13.925	3/2-,5/2+		
26	13.050	2	$\frac{1}{2}$, $\frac{1}{2}$ ($\frac{3}{2}$ +, $\frac{5}{2}$ + (0.12, 0.064	12 9	8.4, 4.5 9, 6.2	4.344	14.056	3/2-,7/2-		
51 56	13.071	1	$\frac{1}{2}, \frac{3}{2}$ $\frac{3}{3}+ \frac{5}{5}+$	0.39, 0.21	9,0.21 6.8 8.5,4 1,0.15 12 18, 8,0.12 11 11,7 0.90 6.3 9 5,0.11 12 24, 4,0.17 23 18, 5,0.053 15 8.3,4 0.063 22 20	0.21 6.8 8.5, 4.6	8.5, 4.6	4.5	14.184	3/2-,3/2+	
50	13.153	2	$\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ +, $\frac{1}{2}$ +	0.21, 0.15		18, 12	4.616	14.280	3/2-,3/2+		
02 59	13.195	0	$\frac{\frac{1}{2}^{+}}{5-\frac{7}{2}-}$	0.90		0.90 6.3 5, 0.11 12 2 4, 0.17 23 1	9	4.704	14.353	1/2+,7/2-	
67	13.332	2	2 , 2 3 + 5 + 2 , 2	0.24, 0.17			18, 12	4.825	14.453	1/2+,7/2-	
67	13.422	3	$\frac{3}{2}^{-}, \frac{7}{2}^{-}$ (0.07, 0.053		8.3, 6.3	1 805	14 511	1/2-0/2+		

Experimental data

- (alpha,el): Cseh et al, 1984; excitation function at 5 angles; no info on syst. Unc.
- (alpha,n): Wrean and Kavanagh, 2000: up to 3 MeV, fine resolution <0.5 keV, norm. unc. 8%
- (alpha,p): Schier et al, 1976: angular dsitributions at ~20 angles; absolute norm. 25%
- Normalizations in R-matrix analysis: free

Results up to ~3 MeV

(a,a)

Cseh et al 1984

¹⁹F(a,p) Schier et al 1976

Excitation energy(MeV)

Work in progress -- to do

- Complete R-matrix analysis up to 5 MeV with a chi2 ~ 2 Nov 23
- Extend to 5 MeV: Add Balakrishnan et al data and partial (alpha,n) channels – release complete analysis
- Extend to 9 MeV: consider statistical model
- Expecting new NPL data up to higher energies (than 9 MeV)
- Perform R-matrix analysis with SAMMY too
- Produce ENDF files

Thank you!