

Status of the LANL ¹⁵N System Analysis

Gerry Hale and Mark Paris

29 August 2023

LA-UR-23-29902

8/30/23 ·

Summary of ¹⁵N Analysis

		channel	a _c (fm)	I _{max}		
		n+ ¹⁴ N	2.5	2		
		p+14C	4.3	3		
		α+11B	5.1	3		
Reaction	Energ	ies (MeV)	# data points	Types of c	lata	χ²
¹⁴ N(n,n) ¹⁴ N	$E_n = 0 - 2.5$		931	$\sigma_{\mathrm{T}}, \sigma(\theta)$		889
¹⁴ N(n,p) ¹⁴ C	$E_n = 0 - 3.0$		362	σ_{int}		766
¹⁴ N(n,α) ¹¹ B	E _n =1.33 - 2.32		104	σ_{int}		304
¹⁴ C(p,n) ¹⁴ N	$E_p = 1.17 - 3.1$		407	$\sigma_{int,} \sigma(\theta), A_y(\theta)$		1163
¹¹ Β(α,n) ¹⁴ Ν	E _α =0.33 - 2.39		190	σ_{int}		626
¹¹ Β(α,p) ¹⁴ C	E _α =1.4	5 - 2.94	145	$\sigma_{\text{int,}}\sigma(\theta$)	564
		Total	2139			4312

¹⁴N(n,n)¹⁴N Differential Cross Section

180

En= 1.1300 MeV

14n(n,n)14n dα/dΩ E= 1.130 MeV

calculated at E= 1.130 14N(n,n)14N diff. cross

400 10⁻³

350

Cl 250

ਰੋ₂₀₀

100

50 L

30 60 90

۰

14n(n,n)14n do/dΩ E= 1.756 MeV

θ_

8/30/23

⁵

120 150

180

90

90 120 150

θ....

14c(p,n)14n Ay(p) E= 2.272 MeV

calculated at E= 2.272

polarization times xsec, niecke7

11b(4he,p)14c dα/dΩ E= 2.333 MeV

calculated at E= 2.333 diff. cross section en = 2.333 mer

2.0 *10⁻³

1.5

10

0.0

-0.5

-1.0

LOS Alamos NATIONAL LABORATORY

do/dΩ

(d) ▲ 0.5 .

11b(4he,p)14c dσ/dΩ E= 1.572 MeV

do/dΩ

¹¹B(α,p)¹⁴C Differential Cross Section

11b(4he,p)14c dσ/dΩ E= 2.333 MeV

diff. cross section en = 2.333 mey

60

90

 $\boldsymbol{\theta}_{\text{CM}}$

120

150

180

calculated at E= 2.333

10⁻⁴

dơ/dΩ 10⁻⁵

0

30

¹⁴N(n,p)¹⁴C Integrated Cross Section

¹⁴N(n,α)¹¹B Integrated Cross Section

¹¹B(α,n)¹⁴C Integrated Cross Section

¹¹B(α,p)¹⁴C Integrated Cross Section

Summary/Conclusions

- The current EDA analysis of the n+¹⁴N (¹⁵N system) reactions does a rather good job of describing most of the low-energy data. A notable exception is the low-energy ¹¹B(α,p)¹²C cross section measured by Wang.
- Different J^π values were found for some of the levels. In addition to the narrow resonances, underlying broad structure is important for most of the reactions.
- An extension to higher energies is needed. Do we have enough experimental data?
- Charged particle evaluations for $p+^{12}C$ and $\alpha+^{11}B$ could be produced from a higher-energy extension of this analysis, in addition to the one for $n+^{14}N$.

