The Shape Method

Mathis Wiedeking
NRF - iThemba LABS, Cape Town
University of the Witwatersrand, Johannesburg

Supported by the National Research Foundation under grant number 118840.

Shape Method

- D_{0} is not known.
- No standard approach in absence of D_{0}.
- Unambiguous identification of origin and destination of primaries.
- Functional form is retained between primaries from same excitation energy bin.
- Concepts from Average Resonance Capture, Ratio, and χ^{2} methods.

Independent normalization for γ-ray strength functions: The shape method

Extracting model-independent nuclear level densities away from stability

D. Mücher $\odot,{ }^{1,2,3,{ }^{*}}$ A. Spyrou, ${ }^{4,5,6, \dagger}$ M. Wiedeking $\odot{ }^{7,8}$ M. Guttormsen $\odot,{ }^{9}$ A. C. Larsen $\odot,{ }^{9}$ F. Zeiser, ${ }^{9}$ C. Harris, ${ }^{10,}$ A. L. Richard $\odot,{ }^{10,6}$ M. K. Smith, ${ }^{10}$ A. Görgen $\odot,{ }^{9}$ S. N. Liddick, ${ }^{1,11}$ S. Siem, ${ }^{9}$ H. C. Berg ©, ${ }^{10,5}$ J. A. Clark, ${ }^{12}$ P. A. DeYoung ©, ${ }^{13}$ A. C. Dombos, ${ }^{14}$ B. Greaves ©, ${ }^{1}$ L. Hicks,,${ }^{10,5}$ R. Kelmar, ${ }^{14}$ S. Lyons, ${ }^{15}$ J. Owens-Fryar®, ${ }^{10,5}$ A. Palmisano, ${ }^{10,5}$ D. Santiago-Gonzalez, ${ }^{12}$ G. Savard, ${ }^{12}$ and W. W. von Seeger ${ }^{13}$

Shape Method Concepts

Identification of origin and destination of primaries.
Functional form is retained between primary transitions from a specific excitation energy. Concepts from Average Resonance Capture, Ratio, and χ^{2} methods
iThemba

UNIVERSITY

Shape Method Concepts

Identification of origin and destination of primaries.
Functional form is retained between primary transitions from a specific excitation energy. Concepts from Average Resonance Capture, Ratio, and X ${ }^{2}$ methods

S. Goriely et al., Eur. Phys. J. A 55, 172 (2019)

Shape Method Concepts

Identification of origin and destination of primaries.

Functional form is retained between primary transitions from a specific excitation energy. Concepts from Average Resonance Capture, Ratio, and X ${ }^{2}$ methods

S. Goriely et al., Eur. Phys. J. A 55, 172 (2019)

MD Jones et al., PRC 97, 024327 (2018)

MW et al., PRL 108, 0162503(2012).

Shape and Sewing Method

- Primary gamma-rays from intercepts of diagonals with E_{x} gate.
iThemba

Shape and Sewing Method

- Primary gamma-rays from intercepts of diagonals with E_{x} gate.

- Pair of data points internally normalized and proportional to PSF.
- Average γ energy of the extremes of 2 neighboring pairs.
- $2^{\text {nd }}$ pair scaled by a factor to match $1^{\text {st }}$ pair.
- Logarithmic interpolation.
- Results in functional form of PSF.

Shape Method in practice: ${ }^{56} \mathrm{Fe}$

Shape Method in practice: ${ }^{92} \mathrm{Zr}$

$$
\begin{array}{ll}
D_{1}=0^{+} 0 \mathrm{keV} & \mathrm{D}_{3}=0^{+} 1383 \& 4^{+} 1495 \mathrm{keV} \\
D_{2}=2^{+} 934 \mathrm{keV} & D_{4}=3^{-23} 2340 \& 4^{+} 2398 \& 5-2486 \mathrm{keV}
\end{array}
$$

Shape Method in practice: ${ }^{164}$ Dy

$$
\begin{aligned}
& D_{1}=0^{+}, 2^{+}, 4^{+}, 6^{+}, 0-0.5 \mathrm{MeV} \\
& D_{2}=14 \text { levels } 0.76-1.39 \mathrm{MeV}
\end{aligned}
$$

Shape Method in practice: ${ }^{144} \mathrm{Nd}$

Guttormsen, Ay, Ozgur et al., Phys. Rev. C 106, 034314 (2022). Comprehensive study on PSF evolution for 9 Nd isotopes.

Shape Method and NLD on stable isotope

Mücher, Spyrou, MW et al., Phys. Rev. C 107, L011602 (2023).

Shape Method and NLD on radioactive isotope

Mücher, Spyrou, MW et al., Phys. Rev. C 107, L011602 (2023).

iThemba

