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Obvious tasks

• Update Dobs  (new Mughabghab Atlas, …).


• Refit current systematics. 


• Correct RIPL-3 GC and GSM systematics 
that used vibrational enhancement of the 
same order as rotational.


• Consider Menghoni systematics for GC


• Estimate reliable uncertainties on parameters
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Key challenges: 1. dumping of collective enhancements
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The saddle-point moments of inertia are calculated using
Sierk’s routine MOMFIT [29], which provides a fit to
advanced liquid-drop model calculations. It should be
stressed that Eqs. (199) and (200) include a summation
over projection of the angular momentum K and thus
automatically account for the rotational enhancement.
The yrast line is obtained, setting level densities to 0
whenever the rotational energy becomes larger than U .
In addition to the rotational enhancement, the model
also accounts for the vibrational enhancement. To this
end Eqs. (199) and ( 200) are multiplied by K

vib

K
vib

= exp

{

1.7

(
3m0A

4πh2S
drop

)2/3

T 4/3

}

(203)

with S
drop

= 17/4πr20 and r0 = 1.26. Damping of
the rotational enhancement is achieved by multiplying
Eqs. (199 and 200) by

1 − Q
rot

(
1 −

1

!2/"
⊥

t

)
, (204)

where Q
rot

= 2/ [exp(E
cor

/t) + 1] is a damping function
which tends to 0 for low temperatures t, and approaches
1 for t → ∞. The Coriolis energy is given by

E
cor

% !ω0 | δ
osc

|= 41A−1/3 | δ
osc

| . (205)

Following Junghans et al. [100], Q
rot

is assumed to be
deformation independent

Q
rot

=
1

1 + exp
(
−Ecr

dcr

) −
1

1 + exp
(
−E−Ecr

dcr

) (206)

with E
cr

= 40 MeV and d
cr

= 10 MeV. The two terms in
Eq. (206) ensure that Q

rot
= 0 at E = 0 and tends to 1

for E → ∞. We note that !2/"
⊥

t is approximately equal
to the rotational enhancement and therefore multiplica-
tion of the level densities by Eq. (204) actually removes
the rotational enhancement when Q

rot
= 1. As the nu-

clear temperature T increases, the vibrational enhance-
ment is damped by multiplying Eqs. (199) and (200) by
the factor

Q
vib

= exp−1

(
1 −

T − T1/2

DT

)
. (207)

Here T1/2 = 1 MeV and DT = 0.1 MeV are taken as
default.

The low-energy part of the level density is calculated
in terms of the super-fluid (BCS) model [101]. With the
pairing gap ∆ = 12/

√
A, the critical temperature T

crt
is

T
crt

= 0.567∆. (208)

The critical value of the level density parameter a is then
determined by the iteration procedure

a(0)

crt

= ã (1 + γδ
W

) , (209)

U (n) = a(n)

crt

T 2
crt

, (210)

a(n+1)

crt

= ã

[
1 +

δ
W

U (n)

(
1 − exp

(
−γU (n)

))]
. (211)

Here ã is the asymptotic value of the level density param-
eter. Eqs. (210) and (211) are iterated until the condition

∣∣a(n+1) − a(n)
∣∣

a(n+1)
< 0.001 (212)

is fulfilled. The condensation energy E
cond

, critical en-
ergy U

crt
, a critical value of the determinant Det

crt
, and

critical entropy S
crt

are defined by the following expres-
sions

E
cond

= 1.5a
crt

∆2/π2, (213)

U
crt

= a
crt

T 2
crt

+ E
cond

, (214)

Det
crt

=

(
12
√

π

)2

a3
crt

T 5
crt

, (215)

and

S
crt

= 2a
crt

T
crt

. (216)

At excitation energies below U
crt

(i.e., in the energy
range where the BCS model applies), we define the pa-
rameter ϕ

ϕ =
√

1 − U/U
crt

, (217)

which allows one to express all thermodynamical quanti-
ties in terms of their critical values,

T = 2T
crt

ϕ ln−1

(
ϕ + 1

1 − ϕ

)
, (218)

S = S
crt

T
crt

(1 − ϕ2)/T , (219)

and

Det = Det
crt

(1 − ϕ2)(1 + ϕ2)2 . (220)

The parallel and orthogonal moments of inertia below
the critical temperature T

crt
are

"BCS

‖

= "
‖
T

crt
(1 − ϕ2)/T (221)

and

"BCS

⊥
=

1

3
"

⊥
+

2

3
"

⊥
T

crt
(1 − ϕ2)/T , (222)

respectively (see the following section for the definitions
of "

‖
and "

⊥
). Using these results, the squares of the

effective spin cut-off parameters are defined as

σ2
eff

= "BCS

‖

T for α2 < 0.005 ,

σ2
eff

=
(
"BCS

‖

)1/3 (
"BCS

⊥

)2/3
T for α2 > 0.005 ,

(223)
with α2 being the ground state deformation. The BCS
level densities are calculated according to the expression

ρ
BCS

(U, J) =
2J + 1

2
√

2πσ3
eff

√
Det

exp

(
S − J(J + 1)

2σ2
eff

)

(224)
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Here T1/2 = 1 MeV and DT = 0.1 MeV are taken as
default.

The low-energy part of the level density is calculated
in terms of the super-fluid (BCS) model [101]. With the
pairing gap ∆ = 12/

√
A, the critical temperature T

crt
is

T
crt

= 0.567∆. (208)

The critical value of the level density parameter a is then
determined by the iteration procedure

a(0)

crt

= ã (1 + γδ
W

) , (209)

U (n) = a(n)

crt

T 2
crt

, (210)

a(n+1)

crt

= ã

[
1 +

δ
W

U (n)

(
1 − exp

(
−γU (n)

))]
. (211)

Here ã is the asymptotic value of the level density param-
eter. Eqs. (210) and (211) are iterated until the condition

∣∣a(n+1) − a(n)
∣∣

a(n+1)
< 0.001 (212)

is fulfilled. The condensation energy E
cond

, critical en-
ergy U

crt
, a critical value of the determinant Det

crt
, and

critical entropy S
crt

are defined by the following expres-
sions

E
cond

= 1.5a
crt

∆2/π2, (213)

U
crt

= a
crt

T 2
crt

+ E
cond

, (214)

Det
crt

=

(
12
√

π

)2

a3
crt

T 5
crt

, (215)

and

S
crt

= 2a
crt

T
crt

. (216)

At excitation energies below U
crt

(i.e., in the energy
range where the BCS model applies), we define the pa-
rameter ϕ

ϕ =
√

1 − U/U
crt

, (217)

which allows one to express all thermodynamical quanti-
ties in terms of their critical values,

T = 2T
crt

ϕ ln−1

(
ϕ + 1

1 − ϕ

)
, (218)

S = S
crt

T
crt

(1 − ϕ2)/T , (219)

and

Det = Det
crt

(1 − ϕ2)(1 + ϕ2)2 . (220)

The parallel and orthogonal moments of inertia below
the critical temperature T

crt
are

"BCS

‖

= "
‖
T

crt
(1 − ϕ2)/T (221)

and

"BCS

⊥
=

1

3
"

⊥
+

2

3
"

⊥
T

crt
(1 − ϕ2)/T , (222)

respectively (see the following section for the definitions
of "

‖
and "

⊥
). Using these results, the squares of the

effective spin cut-off parameters are defined as

σ2
eff

= "BCS

‖

T for α2 < 0.005 ,

σ2
eff

=
(
"BCS

‖

)1/3 (
"BCS

⊥

)2/3
T for α2 > 0.005 ,

(223)
with α2 being the ground state deformation. The BCS
level densities are calculated according to the expression

ρ
BCS

(U, J) =
2J + 1

2
√

2πσ3
eff

√
Det

exp

(
S − J(J + 1)

2σ2
eff

)

(224)
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Here T1/2 = 1 MeV and DT = 0.1 MeV are taken as
default.

The low-energy part of the level density is calculated
in terms of the super-fluid (BCS) model [101]. With the
pairing gap ∆ = 12/

√
A, the critical temperature T

crt
is

T
crt

= 0.567∆. (208)

The critical value of the level density parameter a is then
determined by the iteration procedure

a(0)

crt

= ã (1 + γδ
W

) , (209)

U (n) = a(n)
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T 2
crt

, (210)

a(n+1)

crt

= ã

[
1 +

δ
W

U (n)

(
1 − exp

(
−γU (n)

))]
. (211)

Here ã is the asymptotic value of the level density param-
eter. Eqs. (210) and (211) are iterated until the condition

∣∣a(n+1) − a(n)
∣∣

a(n+1)
< 0.001 (212)

is fulfilled. The condensation energy E
cond

, critical en-
ergy U

crt
, a critical value of the determinant Det

crt
, and

critical entropy S
crt

are defined by the following expres-
sions

E
cond

= 1.5a
crt

∆2/π2, (213)

U
crt

= a
crt

T 2
crt

+ E
cond

, (214)

Det
crt

=

(
12
√

π

)2

a3
crt

T 5
crt

, (215)

and

S
crt

= 2a
crt

T
crt

. (216)

At excitation energies below U
crt

(i.e., in the energy
range where the BCS model applies), we define the pa-
rameter ϕ

ϕ =
√

1 − U/U
crt

, (217)

which allows one to express all thermodynamical quanti-
ties in terms of their critical values,

T = 2T
crt

ϕ ln−1

(
ϕ + 1

1 − ϕ

)
, (218)

S = S
crt

T
crt

(1 − ϕ2)/T , (219)

and

Det = Det
crt

(1 − ϕ2)(1 + ϕ2)2 . (220)

The parallel and orthogonal moments of inertia below
the critical temperature T

crt
are

"BCS

‖

= "
‖
T

crt
(1 − ϕ2)/T (221)

and

"BCS

⊥
=

1

3
"

⊥
+

2

3
"

⊥
T

crt
(1 − ϕ2)/T , (222)

respectively (see the following section for the definitions
of "

‖
and "

⊥
). Using these results, the squares of the

effective spin cut-off parameters are defined as

σ2
eff

= "BCS

‖

T for α2 < 0.005 ,

σ2
eff

=
(
"BCS

‖

)1/3 (
"BCS

⊥

)2/3
T for α2 > 0.005 ,

(223)
with α2 being the ground state deformation. The BCS
level densities are calculated according to the expression

ρ
BCS

(U, J) =
2J + 1

2
√

2πσ3
eff

√
Det

exp

(
S − J(J + 1)

2σ2
eff

)

(224)
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is assumed to be
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with E
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= 40 MeV and d
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= 10 MeV. The two terms in
Eq. (206) ensure that Q

rot
= 0 at E = 0 and tends to 1

for E → ∞. We note that !2/"
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t is approximately equal
to the rotational enhancement and therefore multiplica-
tion of the level densities by Eq. (204) actually removes
the rotational enhancement when Q

rot
= 1. As the nu-

clear temperature T increases, the vibrational enhance-
ment is damped by multiplying Eqs. (199) and (200) by
the factor
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)
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Here T1/2 = 1 MeV and DT = 0.1 MeV are taken as
default.

The low-energy part of the level density is calculated
in terms of the super-fluid (BCS) model [101]. With the
pairing gap ∆ = 12/

√
A, the critical temperature T

crt
is

T
crt

= 0.567∆. (208)

The critical value of the level density parameter a is then
determined by the iteration procedure
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= ã (1 + γδ
W

) , (209)
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, (210)
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= ã
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δ
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Here ã is the asymptotic value of the level density param-
eter. Eqs. (210) and (211) are iterated until the condition

∣∣a(n+1) − a(n)
∣∣

a(n+1)
< 0.001 (212)

is fulfilled. The condensation energy E
cond

, critical en-
ergy U

crt
, a critical value of the determinant Det

crt
, and

critical entropy S
crt

are defined by the following expres-
sions

E
cond

= 1.5a
crt

∆2/π2, (213)

U
crt

= a
crt

T 2
crt

+ E
cond

, (214)

Det
crt

=

(
12
√

π

)2

a3
crt

T 5
crt

, (215)

and

S
crt

= 2a
crt

T
crt

. (216)

At excitation energies below U
crt

(i.e., in the energy
range where the BCS model applies), we define the pa-
rameter ϕ

ϕ =
√

1 − U/U
crt

, (217)

which allows one to express all thermodynamical quanti-
ties in terms of their critical values,
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ϕ ln−1

(
ϕ + 1
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)
, (218)

S = S
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are
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and
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⊥
+

2

3
"
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respectively (see the following section for the definitions
of "

‖
and "

⊥
). Using these results, the squares of the

effective spin cut-off parameters are defined as

σ2
eff

= "BCS

‖

T for α2 < 0.005 ,

σ2
eff

=
(
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‖
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⊥
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(223)
with α2 being the ground state deformation. The BCS
level densities are calculated according to the expression

ρ
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2
√

2πσ3
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√
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(
S − J(J + 1)
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eff

)

(224)
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[
1 +

δ
W

U (n)

(
1 − exp

(
−γU (n)

))]
. (211)
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(i.e., in the energy
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ties in terms of their critical values,

T = 2T
crt

ϕ ln−1

(
ϕ + 1

1 − ϕ

)
, (218)

S = S
crt

T
crt

(1 − ϕ2)/T , (219)

and

Det = Det
crt

(1 − ϕ2)(1 + ϕ2)2 . (220)

The parallel and orthogonal moments of inertia below
the critical temperature T

crt
are

"BCS

‖

= "
‖
T

crt
(1 − ϕ2)/T (221)

and

"BCS

⊥
=

1

3
"

⊥
+

2

3
"

⊥
T

crt
(1 − ϕ2)/T , (222)

respectively (see the following section for the definitions
of "

‖
and "

⊥
). Using these results, the squares of the

effective spin cut-off parameters are defined as

σ2
eff

= "BCS

‖

T for α2 < 0.005 ,

σ2
eff

=
(
"BCS

‖

)1/3 (
"BCS

⊥

)2/3
T for α2 > 0.005 ,

(223)
with α2 being the ground state deformation. The BCS
level densities are calculated according to the expression

ρ
BCS

(U, J) =
2J + 1

2
√

2πσ3
eff

√
Det

exp

(
S − J(J + 1)

2σ2
eff

)

(224)

2690

• We really do not know how they go 
away


• EGSM assumes(!) that 
vibrational enhancements fall to 
1/2 at T1/2 = 1 MeV


• Some experimental data suggest 
that they do NOT disappear


• There are some theoretical 
indications (e.g., Joram Alashid) 
that should be considered

Qvib = 1.0/{exp[(T-T1/2)/DT)]+1.0}

Nucl. Phys. A629 (1998) 635 



Key challenges: 2. parity distributions

• Cross sections are generally not sensitive  
to parity distributions, however …

• discrete gamma transitions, especially  

for decay of un-natural parity states  
(inelastic experiments), are.


• isomeric cross sections are.

• Dobs are for a single (ground state) parity; we assume equal parity 

distribution and multiply LD by 2; in reality it could be anything 
between 1 and 3,4,…


• We could make use of microscopic calculations to derive (Z,N,β,E) 
systematics (AI?)

4

Phys. Rev. C 101, 034608 



Key challenges: 3. microscopic approaches

• Even if not always competitive to phenomenological approaches they 
remain an ultimate goal!


• Microscopic approaches give us 


• better understanding


• extrapolation capability to nuclei off the stability line


• insight into spin and parity distributions and potentially into dumping 
of collective effects  

5



Key challenges: 4. new phenomenological approaches

• For example, EMPIRE includes new LD 
combining 

• constant temperature (GC) with

• Fermi gas with dumped collective 

enhancements (EGSM)

• matching at BCS critical energy (phase 

transition so no need to ensure 
smoothness of the second derivative)


• Below critical energy LD are usually 
between GC and EGSM


• Limited testing performed in reaction 
calculations with varying results (GC and 
EGSM are usually closest to each other) 
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Key challenges: 5. experimental opportunities:

Dobs, Oslo method, reaction x-sec., …

• Oslo method (I think amply discussed 
during this meeting)


• Dobs (as already mentioned)


• Gamma spectra (discrete gamma-
lines), e.g. from inelastic scattering, 
(n,2n), (n,p)… reactions => spin and 
parity distributions


• Reaction cross sections used to 
adjust LD in the evaluations


• Neutron spectra (well known to be 
sensitive but, I think, generally 
ignored in determining LD)

7
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Key challenges: 5. experimental opportunities:

neutron spectra
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