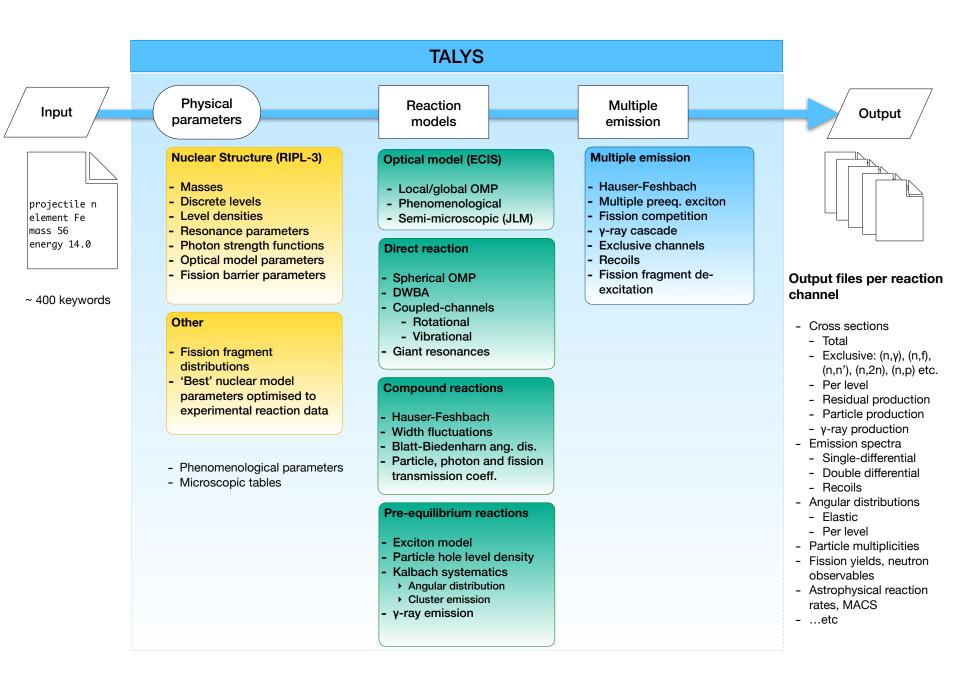


Some views of a level density end user


Arjan Koning, IAEA

IAEA, Consultancy meeting on Level densities, June 26-28 2023

Introduction

- TALYS
- Global level density API
- Adjustment possibilities for cross section calculations
- Discrete level scheme connection and generation
- Spin distribution and its validation
- Format
- Some suggestions for CRP

Review

TALYS: modeling of nuclear reactions

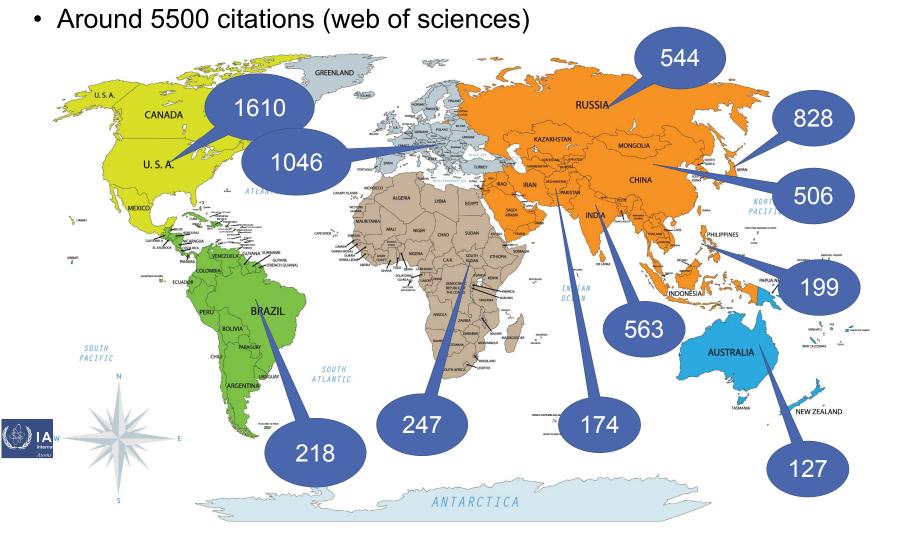
Arjan Koning^{1,a}, Stephane Hilaire^{2,3,b}, Stephane Goriely^{4,c}

¹ Nuclear Data Section, IAEA, Wagrammerstrasse 5, Vienna 1400, Austria

² DIF, CEA, Arpajon 91297, France

³ Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France

⁴ Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Campus de la Plaine, CP-226, Brussels 1050, Belgium


Received: 16 February 2023 / Accepted: 6 May 2023

© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023 Communicated by Nicolas Alamanos

Abstract TALYS is a software package for the simulation of nuclear reactions below 200 MeV. It is used worldwide for the analysis and prediction of nuclear reactions and is based on state-of-art nuclear structure and nuclear reaction models. A general overview of the implemented physics and capabilities of TALYS is given. The general nuclear reaction mechanisms described are the optical model, direct reactions, compound nucleus model, pre-equilibrium reactions and fission. The most important nuclear structure models are those for masses, discrete levels, level densities, photon strength functions and fission barriers. A wide variety of nuclear reactions simulated with TALYS will be demonstrated, ranging from low-energy neutron cross sections, astrophysics, highenergy charged particle reactions and other reactions. TALYS is a nuclear reaction software which aims to give a complete description of nuclear reaction observables, and to be an important link between fundamental nuclear physics and applications.

		2.3.4 Residual production cross sections
		2.3.5 Gamma-ray production cross sections
		2.3.6 Fission cross sections
	2.4	Spectra and angular distributions
		2.4.1 Discrete angular distributions
		2.4.2 Exclusive spectra
		2.4.3 Binary spectra
		2.4.4 Total particle production spectra
		2.4.5 Double-differential cross sections
		2.4.6 Recoils
3	Opt	ical model
	3.1	
		3.1.1 Dispersive OMP: neutrons
		3.1.2 Semi-microscopic JLMB OMP
		3.1.3 Extension to 1 GeV
	3.2	
	3.3	
		3.3.1 Deuterons
		3.3.2 Tritons

TALYS around the World (status 2022)

Could this be the future?

- More harmonisation between nuclear model codes:
 - Only tabulated level densities are provided, even if they come from analytical models
 - Easy API, e.g. get_level_density(Z=21, A=45, Emin=0., Emax=200., model='CTM', number_of_energies=500, etc.)
 - ...possibly in different languages (Python, C+ +, Fortran etc.)
 - Well-established tweaking (parameter adjustment) possibilities

Parameter adjustment

By default, TALYS considers the best nominal level density ρ_{nom} adjusted to the discrete level scheme and D_0 , whenever available. However, for adjustment purposes, flexibility can be achieved either by varying directly all the related parameters or through a scaling function, i.e.

$$\rho(E_x, J, \pi) = \exp(c\sqrt{E_x - \delta})\rho_{nom}(E_x - \delta, J, \pi) \quad (230)$$

where c = 0 and $\delta = 0$ correspond to unaltered nominal level densities. The "pairing shift" δ simply implies obtaining the level density from the table or formula at a different energy. The parameter *c* plays a role similar to that of the level density parameter *a* within the phenomenological models (see Eq. 223). Adjusting *c* and δ together gives adjustment flexibility at both low and higher energies and allows the user to adjust level densities for cross section fitting.

Eq. (230) appropriate for Fermi gas range but not for constant T range

Should be extended by adjustment of the spin distribution (is already in latest version of TALYS)

Is applicable to both microscopic and analytic LD's

_ IALYS discrete levels for ZnU/U (RIPL-based)													
	Experimental												
20	30 70 494 100												
30	0.000000	0.0	1	۵	2ne 0+		0	0.000000	0.0	1 (JI	
1	0.884920	2.0	1		3.650E-12 2-		1	1.104839	2.0	1 :		EJI	P level density
-	0.004520	2.0	-		1.000000 3.970E-04		2	1.491071	4.0	1 2	0 1.000000 0.000E+00	B EJI	P level density
2	1.070760	0.0	1		3.900E-09 04	F	2	1.4910/1	4.0	1 4	2 1 0.999949 0.000E+00	B	P level density
					1.000000 6.340E-02						0 0.000051 0.000E+00	В	
				(0.000000 0.000E+00	aaian	3	1.669014	2.0	1 2		EJI	P level density
3	1.554000	3.0	1	3	0.000000 0.000E+00 JP J,P: Spin, parity as	sign	leu				2 0.002179 0.000E+00	В	E: Energy assigned
					0.000001 0.000E+00 B						0 0.997821 0.000E+00	В	
					0.999977 0.000E+00 B B: Branching ratio a	ssigr	ned						
	1 750160	~ ~		-	0.000022 0.000E+00 B	-							
4	1.759160	2.0	1		1.320E-12 2+ 0.595300 3.580E-04	r							
					0.404700 2.860E-04								
					0.404700 2.0002-04								
										0	0.778972 0.000E+00	в	
		-				15	2.4	19643 8.0	1	4		EJP	level density
15	2.949670	2.0	1	2	4.200E-14 J 1+,2+,					13		в	
					4 0.418600 1.927E-04					7	0.993141 0.000E+00	в	
					1 0.581400 4.040E-04					6	0.001095 0.000E+00	В	
16	2.954000	1.0	-1	4	JP	16	2.4	59302 6.0	1	4 2	0.005753 0.000E+00	B EJP	level density
					4 0.039150 0.000E+00 B	10	2.4	59302 0.0	1	⁴ 13	0.000031 0.000E+00	B	tevet density
					2 0.151948 0.000E+00 B					7	0.991771 0.000E+00	в	
					1 0.202165 0.000E+00 B					6	0.001407 0.000E+00	В	
					0 0.606737 0.000E+00 B					2	0.006792 0.000E+00	в	
17	2.978260	4.0	1	1		++							
					5 1.000000 1.928E-04								

TALVS discrete loyals for 7p070 (PIPL based)

Above Ntop, cumulative discrete levels start to underestimate LD's

Experimental levels above Ntop are not taken into account in Hauser-Feshbach calculations, while their E, J, P, B are valuable.

Origin of theoretical levels: As soon as integral dEx.rho(Ex,J,P) crosses an integer number, assign a level at that energy

Possibility: merge and mix experimental and theoretical levels for each nuclide from Ntop - N=200? Which LD model?

Room for a phenomenological model intermediate 3 60 Years between CTM (4 parameters) and BSFM (2 parameters)?

$$\rho_F^{\text{tot}}(E_x) = \frac{1}{\sqrt{2\pi\sigma}} \frac{\sqrt{\pi}}{12} \frac{\exp\left[2\sqrt{aU}\right]}{a^{1/4} U^{5/4}}.$$

tical form by Demetriou and Goriely [131], and is adopted in TALYS. The expression for the total BFM level density is

$$\rho_{\rm BFM}^{\rm tot}(E_x) = \left[\frac{1}{\rho_F^{\rm tot}(E_x)} + \frac{1}{\rho_0(t)}\right]^{-1},$$
(250)

$$\rho_0(t) = \frac{\exp(1)}{24\sigma} \frac{(a_n + a_p)^2}{\sqrt{a_n a_p}} \exp(4a_n a_p t^2),$$
(251)

where $a_n = a_p = a/2$ and t is given by Eq. (234).

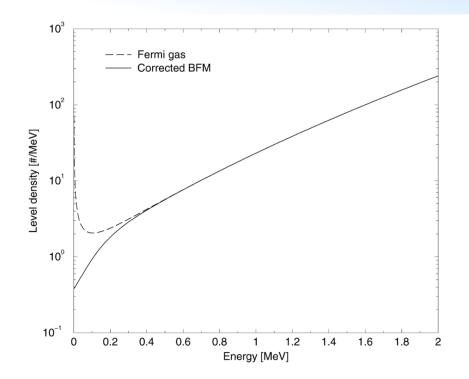
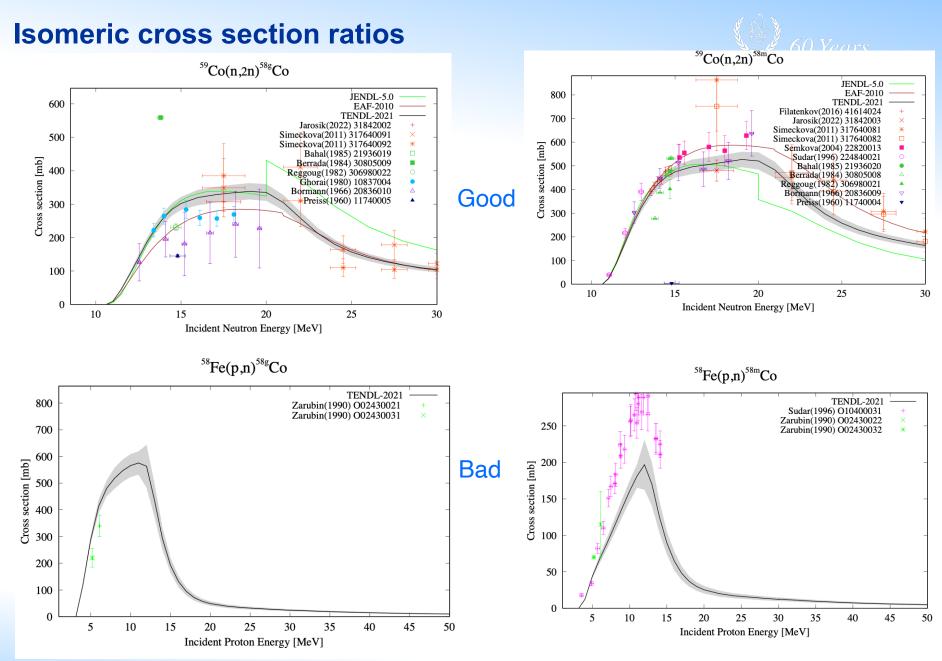



Fig. 1. Grossjean-Feldmeier correction of the Fermi gas formula at low energies for a medium mass nuclide with $a = 15 \text{ MeV}^{-1}$.

Can one make e.g. 't' in Eq. (251) adjustable to mimic a constant temperature effect?

Validation of level density spin distribution

- Isomeric ratios of cross sections
- Gamma-ray production cross sections

Two sensitive inputs: 1. (Missing) spins and branching ratios of discrete level scheme 2. Width of the level density spin distribution

Isomeric cross section ratios

Contents lists available at ScienceDirect

Atomic Data and Nuclear Data Tables

journal homepage: www.elsevier.com/locate/adt

Compilation of isomeric ratios of light particle induced nuclear reactions

A. Rodrigo^{a,b}, N. Otuka^{a,*}, S. Takács^c, A.J. Koning^a

^a Nuclear Data Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Wien, Austria

^b Department of Energy Engineering (Division of Nuclear Engineering), Universidad Politécnica de Madrid, 28006 Madrid, Spain

^c Institute for Nuclear Research (ATOMKI), 4026 Debrecen, Hungary

Averaged over all nuclides and reactions:

Spin cutoff factor could be multiplied by 0.4 - 0.6 to get global best result

Similar required reduction observed for fission yields, and other work, Sudar 2018, Uppsala, to be published, etc.)

A new level density model should have the best result automatically!

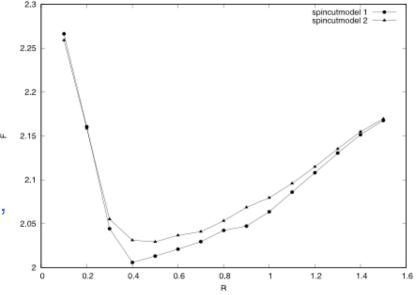
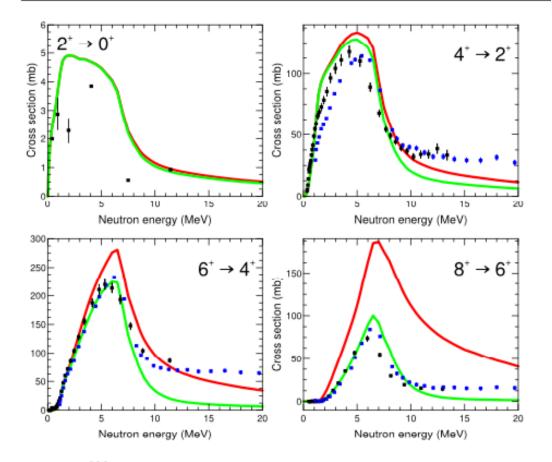



Fig. 3. R dependence of the F-value for the isomeric ratios predicted by TALYS-1.96 with two spin cut-off models.

Gamma-ray production cross sections⁹ Years

Eur. Phys. J. A (2023) 59:131

Fig. 33 238 U(*n*, *n'* γ) cross sections for 4 transitions within the ground state rotational band. Spin and parity of the initial and final states are reported in each panel. Black and blue squares correspond to Ref. [93] and Ref. [211] respectively. The red and green lines correspond to two options for the pre-equilibrium spin distribution of the exciton model (see text for more details)

Two effects:

Particle-hole state density spin distribution (this example)

Total level density spin distribution

Completeness of compilations/evaluations

MACS

59 141 0	1.17300E-01 3.	00000E-03 Mug	gh18	Pr141
ripl	1.11400E-01	1.40000E-03	Kadonis	
mugh18	1.17300E-01	3.00000E-03	Mugh18	
sukhoruchki	n 1.09000E-01	1.30000E-02	Sukhoruchkin	
exfor	1.55000E-01	1.50000E-02	Macklin_1957_11399038	
exfor	1.70000E-01	4.00000E-02	Booth_1958_11429024	
exfor	1.00000E-01	1.50000E-02	Chaubey_1966_30079030	
exfor	8.20000E-02	0.00000E+00	Chaturvedi_1970_304930	09
exfor	1.11000E-01	1.50000E-02	Taylor_1979_30490005	
exfor	1.11400E-01	1.40000E-03	Bao_2000_V0102313	
exfor	1.11400E-01	2.80000E-03	Mughabghab_2006_V10021	41
cendl3.2	1.07842E-01	CE=	9.19369E-01	
endfb8.0	1.01320E-01	CE=	8.63768E-01	
jeff3.3	1.01320E-01	CE=	8.63768E-01	
jendl5.0	1.21897E-01	CE=	1.03919E+00	
tendl.2021	1.07851E-01	CE=	9.19446E-01 The	ermal capture

We may need this for D0 too:

- All available values from
compilations (RIPL2-3, Mugh18
and EXFOR), including the
rejected values

- requires data mining from EXFOR ex ex
- show the "confidence" of the evaluation (was there only 1 choice, or 10?)

- In key-value format (JSON, YAML)^t

Thermal capture cross section

21	45 0	2 627005.01 1 0	0000F 01 Kaw	
21				zero
	ripl	2.70000E+01	2.00000E-01	JUKO
	mugh06	2.72000E+01	2.00000E-01	Mugh06
	mugh18	2.72000E+01	2.00000E-01	Mugh18
	kayzero	2.62700E+01	1.00000E-01	Kayzero
	sukhoruchkin	a 2.71600E+01	2.00000E-01	Sukhoruchkin
	exfor	2.30000E+01	1.15000E+00	Pomerance_1951_11047015
	exfor	2.55000E+01	1.00000E+00	Pattenden_1955_21280006
	exfor	2.83000E+01	7.00000E-01	Wolf_1960_20651004
	exfor	2.66000E+01	5.00000E-01	Wilson_1967_10488002
	exfor	2.70700E+01	1.70000E-01	Mannhart_1975_20610002
	exfor	2.60000E+01	5.00000E-01	Gleason_1975_10644012
2	exfor	2.34000E+01	4.00000E-01	Takiue_1978_20853002
•	exfor	2.72000E+01	2.00000E-01	Mughabghab_2006_V10011491
	exfor	2.69000E+01	1.00000E-01	FarinaArbocco_2013_23266020
	exfor	2.75000E+01	8.00000E-01	Nguyen_2015_30837002
	cendl3.2	0.00000E+00	CE=	0.00000E+00
	endfb8.0	2.71577E+01	CE=	1.03379E+00
	jeff3.3	2.71279E+01	CE=	1.03266E+00
	jendl5.0	2.71387E+01	CE=	1.03307E+00
	tendl.2021	2.72175E+01	CE=	1.03607E+00

Sc045

Unified level density table format?

```
# header:
    title: "Tc99 level density"
#
#
    source: TALYS-2.0
#
   user: Arjan Koning
#
    date: 2023-06-21
#
    format: YANDF-0.1
 residual:
    Z: 43
#
#
    A: 99
    nuclide: Tc99
 parameters:
#
    ldmodel keyword: 5
#
    level density model: Hilaire-Goriely tables
#
#
    Nlow: 8
   Ntop: 15
#
#
    ctable: 0.000000E+00
    ptable: -7.517300E-01
#
# observables:
#
    experimental D0 [eV]: 0.000000E+00
    experimental D0 unc. [eV]: 0.000000E+00
#
    theoretical D0 [eV]: 5.278537E+00
#
#
    Chi-2 D0: 0.000000E+00
#
    C/E D0: 0.000000E+00
# datablock:
    quantity: "level density"
#
#
    columns: 4
#
    entries: 134
#
      E [MeV]
                      Level
                                 N_cumulative Tot LD [MeV^-1]
                    9
   6.527700E-01
                                 8.915215E+00 3.359823E+01
   6.714770E-01
                   10
                                  9.581097E+00
                                                 3.559526E+01
                   11
                                 1.143632E+01 3.870451E+01
   7.194100E-01
   7.267500E-01
                   12
                                 1.174084E+01 4.148845E+01
                   13
   7.392120E-01
                                 1.227090E+01 4.253379E+01
   7.617820E-01
                   14
                                 1.327183E+01
                                                 4.434784E+01
```


Just an example:

YANDF (Yet Another Nuclear Data Format), used to unify all output of TALYS and related Software

CRP on Level densities

- New D0, D1 database
- Include 'nuclear reaction validators':
 - Isomeric cross sections ratios
 - Gamma-ray production cross sections
 - Disentangle PSF and LD effects on e.g. MACS predictions
- Level densities for fission barriers
- Think about the best retrieval method and website.

Thank you!

