LLNL's FUDGE and GIDI+ Code Packages: for Managing, Processing and Accessing GNDS 2.0 Nuclear Data Libraries

B. R. Beck, C. M. Mattoon, and G. Gert Nuclear Data and Theory Group, NACS/PLS

Presented at IAEA May 2023

FUDGE (For Updating Data and Generating Evaluations) is an open-source code for managing nuclear data libraries

- FUDGE is a set of Python modules and scripts for viewing, translating, modifying and processing nuclear data
- Requires Python-3.7 or later, numpy
 - matplotlib, PyQT5 for interactive visualization
 - Computationally intensive tasks implemented in C / C++
- Supports installation either via "git clone/Makefile" or "pip install".
- FUDGE-6.2 released May 2023 with GNDS 2.0 support.
- FUDGE API has gone through some changes, so user scripts may need to be updated!

FUDGE-6 is available from https://github.com/LLNL/fudge.

Some API changes in latest version

- Replace the following
 - from fudge.gnds import reactionSuite, covariances
 - RS = reactionSuite.readXML("file.xml")
 - CS = covariances.covarianceSuite.readXML("file-covar.xml", reactionSuite=RS)

with

from fudge import reactionSuite
RS = reactionSuite.read("file.xml")
CS = RS.loadCovariances()

 Can get a generic GNDS file with from fudge import GNDS_file gnds = GNDS_file.read("file.xml")

GNDS_file.read supports reading any GNDS map, PoPs, reactionSuite or covarianceSuite file. User is responsible for checking return type.

- Other changes:
 - class names capitalized (e.g., class "product" changed to "Product")
 - string constants converted to enums
 - Some modules moved
 - and more

FUDGE includes Python scripts to help with some common nuclear data tasks.

- Translate ENDF-6 data into GNDS:
 - endf2gnds.py /path/to/evaluation.endf evaluation.xml
- Run physics quality checks on GNDS data file:
 - checkGNDS.py evaluation.xml
- Extract outgoing spectrum for specified product at specified projectile energy — energySpectrum.py evaluation.xml <product> <incidentEnergy> # More on this later.
- Process data for Monte Carlo and/or deterministic transport

 processProtare.py -mc -mg -up -t 293.6 -t 300 --temperatureUnit K evaluation.xml proc.xml
- Generate ACE file (after Monte Carlo processing with processProtare.py)
 - python -m brownies.LANL.toACE.toACE proc.xml proc.ace -i 1
- and more! Build map files, summarize processed files, comparison plots, etc.

fudgeScripts.py: Script provides synopsize of FUDGE scripts.

fudgeScripts.py	
addFlux.py	- Add a flux definition (label and f(T,E,mu) data) to a fluxes file (e.g., fluxes.xml).
addMultigroup.py	- Adds a multi-group boundary definition (i.e., label and the multi-group boundaries) to a groups file (e.g., groups.xml).
buildMapFile.py	- Creates a map file from a list of GNDS reactionSuite and map files.
checkGNDS.py	- Reads GNDS files and runs all of FUDGE physics tests on each.
checkMap.py	- Checks a GNDS map file and its contents for consistency.
convertMapFile.py	- Converts a GNDS map file from one format to another.
crossSections.py	- Outputs the cross section for each reaction and total for a GNDS reactionSuite.
energyBalance.py	- For each reaction of a protare, writes available energy, each product's outgoing energy, energy balance, etc. to files.
energySpectrum.py	- For the specified projectile energy and product, outputs energy spectra by reaction and also summed spectra.
gnds2gnds.py	- Converts a GNDS file to a GNDS, allowing the new file to have different parameters
	(e.g., format, energyUnit).
peek.py	- Prints an outlines of the reactions, and their energy domaian and products for a GNDS reactionSuite file.
processProtare.py	- Processes a GNDS reactionSuite file for Monte Carlo and/or deterministic transport at various temperatures.
temperatures.py	- Prints the list of temperatures in a GNDS reactionSuite and labels for each processed style for each temperature.

There are more scripts and many more to come.

processProtare.py serves as the main driver for processing nuclear data libraries

- Supports generating multi-temperature data for Monte Carlo transport, deterministic transport or both
 - Processed results are also stored in GNDS, either in XML or in hybrid XML/HDF5 (hybrid option reduces file size and improves load times)
 - Many command line options (processProtare.py --help for details)
 - Simplify processing options by creating a standard options file and using the '@' parameter:

processProtare.py evaluation.xml proce.xml @options.input

```
cat options.input

--energyUnit eV --temperatureUnit K

-t 293.6

-t 300

-mc -mg -up

...
```


Some processProtare.py steps

resonance reconstruction if needed

⊆ 10⁻

දි 10-

 10^{-5}

10

10º

 10^{-1}

10-2

10-10-11

ê 101

Doppler broadening: uses kernel broadening method

Converting TNSL parameters to doubledifferential cross sections (including new LTHR=3 mixed elastic option)

Additional steps for efficient Monte-Carlo sampling

- Linearizing all functions and generating a 'union grid' of incident energies for all reaction cross sections – faster cross-section lookup
- Pre-compute cumulative probability density functions (CDFs) for faster sampling of distributions
 Angular distribution for W184 (n,elastic) at 5 MeV

Additional steps for deterministic transport: generating multigroup cross sections and transfer matrices

Transfer matrices

Improved URR probability tables

- A temperature unit error was recently fix in FUDGE's URR code and we are now getting good results for FUDGE produced URR probability tables.
- Still need to automate in FUDGE (e.g., add to processProtare.py)

See Caleb Mattoon and Marie-Anne Descalle for details.

FUDGE supports generating map files to assemble reactionSuite files into a complete library

 map files are similar to MCNP's xsdir, but they support importing other map files buildMapFile.py --library Test -o test.map neutrons/* all.map

buildMapFile.py uses GNDS_file.py type and preview functions, and calculates checksums.

energySpectrum.py

- Outputs the energy spectra for the specified product and incident projectile energy for each reaction and several reaction sums.
 - Outputs *.spec (reaction cross section * pdf), *._pdf and *._cdf files.
- energySpectrum.py --tid Li6 ENDFB-VIII.0/neutrons.map n 10 --outputDir energySpectrum

ENDF/B-VIII.0 n+Li6 neutron spectra at 10 MeV

energyBalance.py (new)

- Outputs detailed energy curves as a function of projectile's energy for each reaction (available energy, each product's outgoing energy, excess energy, etc.).
- energyBalance.py ENDF-VIII.0/neutrons/n-007_N_014.xml Out

What is GIDI+?

- GIDI+ is a collection of (mainly) C++ APIs (i.e., sub-packages) for reading and sampling from GNDS data as needed by transport codes.
- Main C++ APIs are:
 - PoPI: access to GNDS PoPs data.
 - GIDI: access to GNDS reactionSuite data.
 - MCGIDI: provides data lookup and sampling for Monte Carlo transport codes.
 - HAPI: Interface between GNDS data and GIDI that allows data to be in XML, HDF5 or Hybrid formats.
- Non-C++ sub-packages
 - numericalFunctions: C library for manipulating numerical 1d data (e.g., adding, multiplying).
 - Also used by FUDGE
- Third party code packages
 - pugixml:
 - Used for parsing XML files.
 - HDF5:
 - Used for reading hdf5 files.

What transport codes uses GIDI+

- Ardra:
 - LLNL deterministic transport code
 - Routinely updated with latest GIDI+
- Mercury:
 - LLNL Monte Carlo transport code
 - Routinely updated with latest GIDI+
- FUTURE plans:
 - GEANT4
 - Worldwide development coordinated by CERN
 - Written in C++
 - GEANT4 has a very old version of GIDI+ that was written in C. Does not support GNDS
 - Plan, as part of GRIN project, to update GEANT4 to the latest GIDI+.
 - We are meeting with GEANT4 people to update GEANT4

Changes to speed up loading a GNDS file into FUDGE and GIDI

- Our users have asked us to include all data, including processed data, for one protare (e.g., "n+O16" or "p+Li6") into "one" file. This includes:
 - Original evaluated data
 - The following data at 25 temperature (was 23 but we have been asked to include 0 and 77 K).
 - Data for Monte Carlo transport
 - Data for determinist transport (multi-group data)
 - We also leave in all data needed for processing the two above (e.g., cross section heated data).
 - Ergo, there are at least 76 child nodes in each reaction's cross section.
- Therefore, a processed protare file can be huge
 - For example, 1.3GB for "n+U238".
- We have done 3 things to speed up reading in the files (presented in the next few slides)
 - LLNL deterministic transport codes tells us that reading "summed" (discussed later) is now faster than our legacy binary formatted data.
 - Monte Carlo transport codes also read in protares in parallel

Changes to speed up loading a GNDS file into FUDGE and GIDI - I

- We can store GNDS file in a hybrid format
 - Structure is stored in XML
 - Floats and integers in a "values" node are stored in an HDF5 file.

n-008_0_016.xml	# (549 MB)
versus	
n-008_O_016.xml HDF5/n-008_O_016.h5	# Structure in XML (36 MB) # Float and integer data (344 MB)

<XYs1d interpolation="log-log"> <axes> <axis index="1" label="energy_in" unit="MeV"/> <axis index="0" label="radius" unit="fm"/></axes> <values href="HDF#/dData" startIndex="1818252" count="166"/></XYs1d></scatteringRadius>

For details see Caleb Mattoon.

Changes to speed up loading a GNDS file into FUDGE and GIDI - II

- FUDGE and GIDI support lazy parsing
 - Basically, a large data node is not "parsed" into FUDGE or GIDI classes until it is accessed by the user.
 - They are still parsed by the XML parser but this is relatively fast.
 - For example, the three nodes in red below are not "parsed" into FUDGE or GIDI until accessed:

```
<XYs1d label="heated_000">
<axes>...</axes>
<values href="HDF#/dData" startIndex="2575918" count="181928"/></XYs1d>
<Ys1d label="MonteCarlo_000">
<axes>...</axes>
<values href="HDF#/dData" startIndex="2757846" count="482542"/></Ys1d>
<gridded1d label="MultiGroup_000">
<axes>...</axes>
<array shape="230" compression="flattened">
<values valueSyme="230" compression="flattened">
<valueSyme="230" compression="flattened">
</flattenedSyme="230" compression="flattened">
</flattenedSyme="230" compression="flattened">
</flattenedSyme="230" compression="flattenedSymm="230" compression="flattenedSymme">
</flattenedSymme compression="flattenedSymme"</flattenedSymme compression="flattenedSymme"</flattenedS
```

Changes to speed up loading a GNDS file into FUDGE and GIDI - III

 For multi-group data, FUDGE calculates multi-group sums and stores the results within the applicationData node. When accessing multi-group summed data, GIDI will read for the pre-sum data if present and requested (and all reactions enabled). Otherwise, GIDI will recompute the multi-group summed data which takes much longer since many lazy-parsed nodes need to be parsed.

```
<applicationData>
<institution label="LLNL::multiGroupReactions">
<reaction label="total" ENDF_MT="1"> ... </reaction></institution>
<institution label="LLNL::multiGroupDelayedNeutrons">
<products> ... </products></institution>
<institution label="LLNL::multiGroupDelayedNeutrons">
<outputChannel genre="NBody"> ... </outputChannel></institution></applicationData>
```

• We have put in an issue to make this part of GNDS 3.0.

EMU: Realization sampling

- Kyle Wendt has developed a python code to create realizations from mean and covariance data.
- The code is dubbed EMU (Evaluated Means and Uncertainties).
- EMU uses FUDGE to access GNDS data and process the realizations.
- Users at LLNL use EMU for sensitivity studies.
- EMU will be released on github.com.

Some future plans

- Improve documentation/tutorials. Jupyter notebook tutorials are proving popular at LLNL
- Integrate URR probability tables processing into processProtare.py
 - Now getting good agreement with NJOY / FRENDY URR probability table results.
- More efficient processing
 - Some codes run in parallel, but many are still serial (add more threading and GPU coding).
- Adding more scripts to FUDGE
- Support direct sampling of TNSL S(T, α , β) data
- Some refactoring of FUDGE still possible
- And more

Summary

- GNDS, FUDGE and GIDI+ are replacing legacy formats and codes as the standard toolkit for nuclear data users at LLNL
- New version of FUDGE and GIDI+ supports the GNDS 2.0 standard and are available at
 - <u>https://github.com/LLNL/fudge</u>
 - version 6.2.0
 - Two ways to install: "pip install" or "git clone and make -s"
 - <u>https://github.com/LLNL/</u>
 - version 3.25.7
 - Requires C++11
 - Builds with Makefile
- We plan to release new versions every 3 months to github.com (especially FUDGE).
- All codes released under MIT license, except currently FUDGE BSD.
- For questions please contact <u>beck6@llnl.gov</u>, <u>mattoon1@llnl.gov</u> or <u>gert1@llnl.gov</u>

Issue with TENDL2021 "n + Be9" protare

МТ		anarau	$\cap T$		
	TEVET	EIIELAX			
875	0	0.0	-1684000.0		
876	1	745400.0	-2429400.0		
877	2	1096000.0	-2780000.0		
878	3	1365000.0	-3049000.0		
879	4	3020000.0	-4704000.0		
880	5	3906000.0	-5590000.0		
881	6	4696000.0	-6380000.0		
882	7	5076000.0	-6760000.0		
883	8	6256000.0	-7940000.0		
884	9	9599000.0	-11283000.0		
885	10	10126000.0	-11810000.0		
886	11	713000.0	-2397000.0		
887	12	2316000.0	-400000.0		
888	13	1666000.0	-3350000.0		
889	14	-18600.0	-1665400.0		
Nega	Negative excitation level = -18600.0 for ZA = 4008 and levelIndex = 14 is not allowed				
890	15	779600.0	-2463600.0		
Negative excitation level = -18600.0 for ZA = 4008 and levelIndex = 14 is not allowed					
WARI	NING: r	ead ENDF err	cor: len(info.doRaise) > 0		

Issue with TENDL2021 "n + Be9" protare

ReactionSuite: n + Be9
PoPs
chemicalElements
chemicalElement:
/reactionSuite/PoPs/chemicalElements/chemicalElement[@symbol='Be']
Isotope Be8
WARNING: Discrete level 11 is out of order
WARNING: Discrete level 12 is out of order
WARNING: Discrete level 13 is out of order
WARNING: Discrete level 14 is out of order
WARNING: Discrete level 15 is out of order

I modified FUDGE to translate Be9(n,2n)Be8_e* in a better way - IMHO.

<reaction< th=""><th>label="n + Be9" ENDF_MT="2"></th></reaction<>	label="n + Be9" ENDF_MT="2">
<reaction< th=""><th>label="2n + (Be8 -> 2He4)" ENDF_MT="875"></th></reaction<>	label="2n + (Be8 -> 2He4)" ENDF_MT="875">
<reaction< th=""><th>label="n + n + (Be8_e1 -> 2He4)" ENDF_MT="876"></th></reaction<>	label="n + n + (Be8_e1 -> 2He4)" ENDF_MT="876">
<reaction< th=""><th>label="2n + (Be8_e2 -> 2He4)" ENDF_MT="877"></th></reaction<>	label="2n + (Be8_e2 -> 2He4)" ENDF_MT="877">
<reaction< th=""><th>label="2n + (Be8_e3 -> 2He4)" ENDF_MT="878"></th></reaction<>	label="2n + (Be8_e3 -> 2He4)" ENDF_MT="878">
<reaction< th=""><th>label="2n + (Be8_e4 -> 2He4)" ENDF_MT="879"></th></reaction<>	label="2n + (Be8_e4 -> 2He4)" ENDF_MT="879">
<reaction< th=""><th>label="2n + (Be8_e5 -> 2He4)" ENDF_MT="880"></th></reaction<>	label="2n + (Be8_e5 -> 2He4)" ENDF_MT="880">
<reaction< th=""><th>label="2n + (Be8_e6 -> 2He4)" ENDF_MT="881"></th></reaction<>	label="2n + (Be8_e6 -> 2He4)" ENDF_MT="881">
<reaction< th=""><th>label="2n + (Be8_e7 -> 2He4)" ENDF_MT="882"></th></reaction<>	label="2n + (Be8_e7 -> 2He4)" ENDF_MT="882">
<reaction< th=""><th>label="2n + (Be8_e8 -> 2He4)" ENDF_MT="883"></th></reaction<>	label="2n + (Be8_e8 -> 2He4)" ENDF_MT="883">
<reaction< th=""><th>label="2n + (Be8_e9 -> 2He4)" ENDF_MT="884"></th></reaction<>	label="2n + (Be8_e9 -> 2He4)" ENDF_MT="884">
<reaction< th=""><th>label="2n + (Be8_e10 -> 2He4)" ENDF_MT="885"></th></reaction<>	label="2n + (Be8_e10 -> 2He4)" ENDF_MT="885">
<reaction< th=""><th>label="2n + (Be8_e11 -> 2He4)" ENDF_MT="886"></th></reaction<>	label="2n + (Be8_e11 -> 2He4)" ENDF_MT="886">
<reaction< th=""><th>label="2n + (Be8_e12 -> 2He4)" ENDF_MT="887"></th></reaction<>	label="2n + (Be8_e12 -> 2He4)" ENDF_MT="887">
<reaction< th=""><th>label="2n + (Be8_e13 -> 2He4)" ENDF_MT="888"></th></reaction<>	label="2n + (Be8_e13 -> 2He4)" ENDF_MT="888">
<reaction< th=""><th>label="2n + (Be8_e14 -> 2He4)" ENDF_MT="889"></th></reaction<>	label="2n + (Be8_e14 -> 2He4)" ENDF_MT="889">
<reaction< th=""><th>label="2n + (Be8_e15 -> 2He4)" ENDF_MT="890"></th></reaction<>	label="2n + (Be8_e15 -> 2He4)" ENDF_MT="890">
<reaction< th=""><th><pre>label="Be10 + photon [inclusive]" ENDF_MT="102"></pre></th></reaction<>	<pre>label="Be10 + photon [inclusive]" ENDF_MT="102"></pre>
<reaction< th=""><th>label="H1 + Li9 [inclusive]" ENDF_MT="103"></th></reaction<>	label="H1 + Li9 [inclusive]" ENDF_MT="103">
<reaction< th=""><th>label="H2 + Li8 [inclusive]" ENDF_MT="104"></th></reaction<>	label="H2 + Li8 [inclusive]" ENDF_MT="104">
<reaction< th=""><th>label="H3 + Li7 [inclusive]" ENDF_MT="105"></th></reaction<>	label="H3 + Li7 [inclusive]" ENDF_MT="105">
<reaction< th=""><th>label="He4 + He6 [inclusive]" ENDF_MT="107"></th></reaction<>	label="He4 + He6 [inclusive]" ENDF_MT="107">

