
LLNL-PRES-??????
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

LLNL’s FUDGE and GIDI+ Code Packages:
for Managing, Processing and Accessing

GNDS 2.0 Nuclear Data Libraries

B. R. Beck, C. M. Mattoon, and G. Gert
Nuclear Data and Theory Group, NACS/PLS

Presented at IAEA
May 2023

2
LLNL-PRES-838197

§ FUDGE is a set of Python modules and scripts for viewing, translating, modifying and
processing nuclear data

§ Requires Python-3.7 or later, numpy
— matplotlib, PyQT5 for interactive visualization
— Computationally intensive tasks implemented in C / C++

§ Supports installation either via “git clone/Makefile” or “pip install”.

§ FUDGE-6.2 released May 2023 with GNDS 2.0 support.

§ FUDGE API has gone through some changes, so user scripts may need to be updated!

FUDGE (For Updating Data and Generating Evaluations) is an
open-source code for managing nuclear data libraries

FUDGE-6 is available from https://github.com/LLNL/fudge.

3
LLNL-PRES-838197

§ Replace the following
from fudge.gnds import reactionSuite, covariances
RS = reactionSuite.readXML(“file.xml”)
CS = covariances.covarianceSuite.readXML(“file-covar.xml”, reactionSuite=RS)

§ with
from fudge import reactionSuite
RS = reactionSuite.read(“file.xml”)
CS = RS.loadCovariances()

§ Can get a generic GNDS file with
from fudge import GNDS_file
gnds = GNDS_file.read(“file.xml”)

GNDS_file.read supports reading any GNDS map, PoPs, reactionSuite or covarianceSuite file. User is
responsible for checking return type.

§ Other changes:
— class names capitalized (e.g., class “product” changed to “Product”)
— string constants converted to enums
— Some modules moved
— and more

Some API changes in latest version

4
LLNL-PRES-838197

§ Translate ENDF-6 data into GNDS:
— endf2gnds.py /path/to/evaluation.endf evaluation.xml

§ Run physics quality checks on GNDS data file:
— checkGNDS.py evaluation.xml

§ Extract outgoing spectrum for specified product at specified projectile energy
— energySpectrum.py evaluation.xml <product> <incidentEnergy> # More on this later.

§ Process data for Monte Carlo and/or deterministic transport
— processProtare.py -mc -mg -up -t 293.6 -t 300 --temperatureUnit K evaluation.xml proc.xml

§ Generate ACE file (after Monte Carlo processing with processProtare.py)
— python -m brownies.LANL.toACE.toACE proc.xml proc.ace -i 1

§ and more! Build map files, summarize processed files, comparison plots, etc.

FUDGE includes Python scripts to help with some common
nuclear data tasks.

5
LLNL-PRES-838197

fudgeScripts.py: Script provides synopsize of FUDGE scripts.

fudgeScripts.py
addFlux.py - Add a flux definition (label and f(T,E,mu) data) to a fluxes file (e.g., fluxes.xml).
addMultigroup.py - Adds a multi-group boundary definition (i.e., label and the multi-group boundaries) to a

groups file (e.g., groups.xml).
buildMapFile.py - Creates a map file from a list of GNDS reactionSuite and map files.
checkGNDS.py - Reads GNDS files and runs all of FUDGE physics tests on each.
checkMap.py - Checks a GNDS map file and its contents for consistency.
convertMapFile.py - Converts a GNDS map file from one format to another.
crossSections.py - Outputs the cross section for each reaction and total for a GNDS reactionSuite.
energyBalance.py - For each reaction of a protare, writes available energy, each product's outgoing energy,

energy balance, etc. to files.
energySpectrum.py - For the specified projectile energy and product, outputs energy spectra by reaction and

also summed spectra.
gnds2gnds.py - Converts a GNDS file to a GNDS, allowing the new file to have different parameters

(e.g., format, energyUnit).
peek.py - Prints an outlines of the reactions, and their energy domaian and products for a GNDS

reactionSuite file.
processProtare.py - Processes a GNDS reactionSuite file for Monte Carlo and/or deterministic transport at

various temperatures.
temperatures.py - Prints the list of temperatures in a GNDS reactionSuite and labels for each processed

style for each temperature.

There are more scripts and many more to come.

6
LLNL-PRES-838197

§ Supports generating multi-temperature data for Monte Carlo transport, deterministic
transport or both
— Processed results are also stored in GNDS, either in XML or in hybrid XML/HDF5 (hybrid option

reduces file size and improves load times)
— Many command line options (processProtare.py --help for details)
— Simplify processing options by creating a standard options file and using the ‘@’ parameter:

processProtare.py serves as the main driver for processing
nuclear data libraries

cat options.input
--energyUnit eV --temperatureUnit K
-t 293.6
-t 300
-mc –mg –up
…

processProtare.py evaluation.xml proce.xml @options.input

7
LLNL-PRES-838197

§ resonance reconstruction if needed

§ Doppler broadening: uses kernel
broadening method

§ Converting TNSL parameters to double-
differential cross sections (including
new LTHR=3 mixed elastic option)

Some processProtare.py steps

n + Cl35 resonance reactions

Heating U235 elastic scattering

8
LLNL-PRES-838197

§ Linearizing all functions and generating a ‘union grid’ of incident energies for all
reaction cross sections – faster cross-section lookup

§ Pre-compute cumulative probability density functions (CDFs) for faster sampling of
distributions

Additional steps for efficient Monte-Carlo sampling

9
LLNL-PRES-838197

§ Transfer matrices

Additional steps for deterministic transport: generating multi-
group cross sections and transfer matrices

10
LLNL-PRES-838197

§ A temperature unit error was recently fix in FUDGE’s URR code and we are now
getting good results for FUDGE produced URR probability tables.

§ Still need to automate in FUDGE (e.g., add to processProtare.py)

Improved URR probability tables

See Caleb Mattoon and
Marie-Anne Descalle
for details.

11
LLNL-PRES-838197

§ map files are similar to MCNP’s xsdir, but they support importing other map files
buildMapFile.py --library Test -o test.map neutrons/* all.map

FUDGE supports generating map files to assemble reactionSuite
files into a complete library

<map library="Test" format="2.0" checksum="a0cf6d97b19b3a4c2affdc4d5c06d60daf1e3172" algorithm="sha1">
<protare projectile="n" target="H1" evaluation="ENDF/B-8.0" path="neutrons/n-001_H_001.xml"

interaction="nuclear" checksum="a7de427c92cf738d255b7abce0d740736866dcd0"/>
<protare projectile="n" target="O16" evaluation="ENDF/B-7.1" path="neutrons/n-008_O_016.xml"

interaction="nuclear" checksum="a1e8bcb99c64c9b574dea1e95623fa6901075ec1"/>
<protare projectile="n" target="Th227" evaluation="JENDL-7.1" path="neutrons/n-090_Th_227.xml"

interaction="nuclear" checksum="18eedda8ecd27bfec471e4f2f9a2816d713ddfb8"/>
<TNSL projectile="n" target="tnsl-Al27" evaluation="ENDF/B-8.0" path="neutrons/tsl-013_Al_027.xml"

checksum=”…" standardTarget="Al27" standardEvaluation="ENDF/B-8.0"/>
<TNSL projectile="n" target="HinCH2" evaluation="ENDF/B-8.0" path="neutrons/tsl-HinCH2.xml"

checksum=”…" standardTarget="H1" standardEvaluation="ENDF/B-8.0"/>
<import path="all.map" checksum="80eb39043d8e884f1e74b56f22aed9183015b984"/></map>

buildMapFile.py uses GNDS_file.py type and preview functions, and calculates checksums.

12
LLNL-PRES-838197

energySpectrum.py

§ Outputs the energy spectra for the specified product and incident projectile energy for each
reaction and several reaction sums.
— Outputs *.spec (reaction cross section * pdf), *._pdf and *._cdf files.

§ energySpectrum.py --tid Li6 ENDFB-VIII.0/neutrons.map n 10 --outputDir energySpectrum

index
info.txt

000_002.spec
000_002._pdf
000_002._cdf
…
050-091_004.spec
050-091_004._pdf
050-091_004._cdf
total_001.spec
total_001._pdf
total_001._cdf

13
LLNL-PRES-838197

§ Outputs detailed energy curves as a function of projectile’s energy for each reaction
(available energy, each product’s outgoing energy, excess energy, etc.).

§ energyBalance.py ENDF-VIII.0/neutrons/n-007_N_014.xml Out
— Writes output into sub-directories of Out/n+N14

energyBalance.py (new)

availableEnergy.dat

_N13_averageProductEnergy.dat
_n_averageProductEnergy.dat
totalProductEnergy.dat

crossSection.dat
energyBalance.dat

index
0000_002/
0001_051/
0002_052/
…
0059_105/
0060_107/
s004_050-091/
s103_600-649/
s104_650-699/
s105_700-749/
s107_800-849/

Sub-directories Files in sub-directory 0028_016/

14
LLNL-PRES-838197

§ GIDI+ is a collection of (mainly) C++ APIs (i.e., sub-packages) for reading and sampling from
GNDS data as needed by transport codes.

§ Main C++ APIs are:
— PoPI: access to GNDS PoPs data.
— GIDI: access to GNDS reactionSuite data.
— MCGIDI: provides data lookup and sampling for Monte Carlo transport codes.
— HAPI: Interface between GNDS data and GIDI that allows data to be in XML, HDF5 or Hybrid formats.

§ Non-C++ sub-packages
— numericalFunctions: C library for manipulating numerical 1d data (e.g., adding, multiplying).
• Also used by FUDGE

§ Third party code packages
— pugixml:
• Used for parsing XML files.

— HDF5:
• Used for reading hdf5 files.

What is GIDI+?

15
LLNL-PRES-838197

§ Ardra:
— LLNL deterministic transport code
— Routinely updated with latest GIDI+

§ Mercury:
— LLNL Monte Carlo transport code
— Routinely updated with latest GIDI+

§ FUTURE plans:
— GEANT4
• Worldwide development coordinated by CERN
• Written in C++
• GEANT4 has a very old version of GIDI+ that was written in C. Does not support GNDS
• Plan, as part of GRIN project, to update GEANT4 to the latest GIDI+.
• We are meeting with GEANT4 people to update GEANT4

What transport codes uses GIDI+

16
LLNL-PRES-838197

§ Our users have asked us to include all data, including processed data, for one protare
(e.g., ”n+O16” or “p+Li6”) into ”one” file. This includes:
— Original evaluated data
— The following data at 25 temperature (was 23 but we have been asked to include 0 and 77 K).
• Data for Monte Carlo transport
• Data for determinist transport (multi-group data)
• We also leave in all data needed for processing the two above (e.g., cross section heated data).

— Ergo, there are at least 76 child nodes in each reaction’s cross section.

§ Therefore, a processed protare file can be huge
— For example, 1.3GB for ”n+U238”.

§ We have done 3 things to speed up reading in the files (presented in the next few
slides)
— LLNL deterministic transport codes tells us that reading “summed” (discussed later) is now faster

than our legacy binary formatted data.
— Monte Carlo transport codes also read in protares in parallel

Changes to speed up loading a GNDS file into FUDGE and GIDI

17
LLNL-PRES-838197

§ We can store GNDS file in a hybrid format
— Structure is stored in XML
— Floats and integers in a “values” node are

stored in an HDF5 file.

— For details see Caleb Mattoon.

Changes to speed up loading a GNDS file into FUDGE and GIDI - I

n-008_O_016.xml # (549 MB)

versus

n-008_O_016.xml # Structure in XML (36 MB)
HDF5/n-008_O_016.h5 # Float and integer data (344 MB)

<XYs1d interpolation="log-log">
<axes>

<axis index="1" label="energy_in" unit="MeV"/>
<axis index="0" label="radius" unit="fm"/></axes>

<values href="HDF#/dData" startIndex="1818252" count="166"/></XYs1d></scatteringRadius>

18
LLNL-PRES-838197

§ FUDGE and GIDI support lazy parsing
— Basically, a large data node is not “parsed” into FUDGE or GIDI classes until it is accessed by the user.
— They are still parsed by the XML parser but this is relatively fast.
— For example, the three nodes in red below are not “parsed” into FUDGE or GIDI until accessed:

Changes to speed up loading a GNDS file into FUDGE and GIDI - II

<XYs1d label="heated_000">
<axes>…</axes>
<values href="HDF#/dData" startIndex="2575918" count="181928"/></XYs1d>

<Ys1d label="MonteCarlo_000">
<axes>…</axes>
<values href="HDF#/dData" startIndex="2757846" count="482542"/></Ys1d>

<gridded1d label="MultiGroup_000">
<axes>…</axes>
<array shape="230" compression="flattened">

<values valueType="Integer32" label="starts">0</values>
<values valueType="Integer32" label="lengths">230</values>
<values href="HDF#/dData" startIndex="3240619" count="230"/></array></gridded1d>

19
LLNL-PRES-838197

§ For multi-group data, FUDGE calculates multi-group sums and stores the results within
the applicationData node. When accessing multi-group summed data, GIDI will read
for the pre-sum data if present and requested (and all reactions enabled). Otherwise,
GIDI will recompute the multi-group summed data which takes much longer since
many lazy-parsed nodes need to be parsed.

§ We have put in an issue to make this part of GNDS 3.0.

Changes to speed up loading a GNDS file into FUDGE and GIDI - III

<applicationData>
<institution label="LLNL::multiGroupReactions">

<reaction label="total" ENDF_MT="1"> … </reaction></institution>
<institution label="LLNL::multiGroupDelayedNeutrons">

<products> … </products></institution>
<institution label="LLNL::multiGroupDelayedNeutrons">

<outputChannel genre="NBody"> … </outputChannel></institution></applicationData>

20
LLNL-PRES-838197

§ Kyle Wendt has developed a python code to create realizations from mean and
covariance data.

§ The code is dubbed EMU (Evaluated Means and Uncertainties).

§ EMU uses FUDGE to access GNDS data and process the realizations.

§ Users at LLNL use EMU for sensitivity studies.

§ EMU will be released on github.com.

EMU: Realization sampling

21
LLNL-PRES-838197

§ Improve documentation/tutorials. Jupyter notebook tutorials are proving popular at
LLNL

§ Integrate URR probability tables processing into processProtare.py
— Now getting good agreement with NJOY / FRENDY URR probability table results.

§ More efficient processing
— Some codes run in parallel, but many are still serial (add more threading and GPU coding).

§ Adding more scripts to FUDGE

§ Support direct sampling of TNSL S(T,a,b) data

§ Some refactoring of FUDGE still possible

§ And more

Some future plans

22
LLNL-PRES-838197

§ GNDS, FUDGE and GIDI+ are replacing legacy formats and codes as the standard
toolkit for nuclear data users at LLNL

§ New version of FUDGE and GIDI+ supports the GNDS 2.0 standard and are available at
— https://github.com/LLNL/fudge
• version 6.2.0
• Two ways to install: “pip install” or “git clone and make –s”

— https://github.com/LLNL/
• version 3.25.7
• Requires C++11
• Builds with Makefile

§ We plan to release new versions every 3 months to github.com (especially FUDGE).

§ All codes released under MIT license, except currently FUDGE BSD.

§ For questions please contact beck6@llnl.gov, mattoon1@llnl.gov or gert1@llnl.gov

Summary

https://github.com/LLNL/fudge%20version%206.0.0
https://github.com/LLNL/
mailto:beck6@llnl.gov
mailto:mattoon3@llnl.gov
mailto:gert1@llnl.gov

23
LLNL-PRES-838197

Issue with TENDL2021 “n + Be9” protare

MT level energy QI
875 0 0.0 -1684000.0
876 1 745400.0 -2429400.0
877 2 1096000.0 -2780000.0
878 3 1365000.0 -3049000.0
879 4 3020000.0 -4704000.0
880 5 3906000.0 -5590000.0
881 6 4696000.0 -6380000.0
882 7 5076000.0 -6760000.0
883 8 6256000.0 -7940000.0
884 9 9599000.0 -11283000.0
885 10 10126000.0 -11810000.0
886 11 713000.0 -2397000.0
887 12 2316000.0 -4000000.0
888 13 1666000.0 -3350000.0
889 14 -18600.0 -1665400.0
Negative excitation level = -18600.0 for ZA = 4008 and levelIndex = 14 is not allowed
890 15 779600.0 -2463600.0

Negative excitation level = -18600.0 for ZA = 4008 and levelIndex = 14 is not allowed
WARNING: read ENDF error: len(info.doRaise) > 0

24
LLNL-PRES-838197

Issue with TENDL2021 “n + Be9” protare

ReactionSuite: n + Be9
PoPs

chemicalElements
chemicalElement:

/reactionSuite/PoPs/chemicalElements/chemicalElement[@symbol='Be']
Isotope Be8

WARNING: Discrete level 11 is out of order
WARNING: Discrete level 12 is out of order
WARNING: Discrete level 13 is out of order
WARNING: Discrete level 14 is out of order
WARNING: Discrete level 15 is out of order

...

25
LLNL-PRES-838197

I modified FUDGE to translate Be9(n,2n)Be8_e* in a better way - IMHO.
<reaction label="n + Be9" ENDF_MT="2">
<reaction label="2n + (Be8 -> 2He4)" ENDF_MT="875">
<reaction label="n + n + (Be8_e1 -> 2He4)" ENDF_MT="876">
<reaction label="2n + (Be8_e2 -> 2He4)" ENDF_MT="877">
<reaction label="2n + (Be8_e3 -> 2He4)" ENDF_MT="878">
<reaction label="2n + (Be8_e4 -> 2He4)" ENDF_MT="879">
<reaction label="2n + (Be8_e5 -> 2He4)" ENDF_MT="880">
<reaction label="2n + (Be8_e6 -> 2He4)" ENDF_MT="881">
<reaction label="2n + (Be8_e7 -> 2He4)" ENDF_MT="882">
<reaction label="2n + (Be8_e8 -> 2He4)" ENDF_MT="883">
<reaction label="2n + (Be8_e9 -> 2He4)" ENDF_MT="884">
<reaction label="2n + (Be8_e10 -> 2He4)" ENDF_MT="885">
<reaction label="2n + (Be8_e11 -> 2He4)" ENDF_MT="886">
<reaction label="2n + (Be8_e12 -> 2He4)" ENDF_MT="887">
<reaction label="2n + (Be8_e13 -> 2He4)" ENDF_MT="888">
<reaction label="2n + (Be8_e14 -> 2He4)" ENDF_MT="889">
<reaction label="2n + (Be8_e15 -> 2He4)" ENDF_MT="890">
<reaction label="Be10 + photon [inclusive]" ENDF_MT="102">
<reaction label="H1 + Li9 [inclusive]" ENDF_MT="103">
<reaction label="H2 + Li8 [inclusive]" ENDF_MT="104">
<reaction label="H3 + Li7 [inclusive]" ENDF_MT="105">
<reaction label="He4 + He6 [inclusive]" ENDF_MT="107">

